ECE 461 - Homework Set \#8

Lead, PID, Meeting Design Specs - Due Monday, November 2nd

Problem 1-4) Let $G(s)=\left(\frac{100}{(s+1)(s+4)(s+8)(s+9)}\right)$

1) Design a I compensator $\left(K(s)=\frac{k}{s}\right)$ which results in 20% overshoot for a step input. Check you answer in VisSim or MATLAB (i.e. take the step response of the closed-loop system).

First, find the point on the root locus with a damping ratio of 0.4559

```
-->GK = zp2ss([],[0,-1,-4,-8,-9],100);
-->k = logspace(-2,2,1000)';
-->R = rlocus(G, k, 0.4559);
```


$$
s=-0.3269+j 0.6537
$$

Make $\mathrm{G}^{*} \mathrm{~K}=-1$ at this point
-->s = -0.3269 + j*0.6537;
-->evalfr(GK,s)

- 0.5835349 + 0.0000191i
check: $G(s)$ is negative real
-->k = 1/abs(ans)
1.7136934

Check in VisSim:

Note:

- The steady-state error is zero (it's a type-1 system)
- The overshoot is 20% - what we designed for

2) Design a PI compensator $\left(K(s)=\left(\frac{a s+b}{s}\right)\right)$ which results in 20% overshoot for a step input. Check you answer in VisSim or MATLAB (i.e. take the step response of the closed-loop system).
Step 1: Select the form for the compensator

- Add a pole at $\mathrm{s}=0$ to make it type-1
- Add a zero at $\mathrm{s}=-1$ to cancel the slowest stable pole

$$
\begin{aligned}
& K(s)=k\left(\frac{s+1}{s}\right) \\
& G K=\left(\frac{100}{s(s+4)(s+8)(s+9)}\right)
\end{aligned}
$$

Step 2: Draw the root locus of GK. Find the point on the root locus which has a damping ratio of 0.4559

$\mathrm{s}=-0.9965+\mathrm{j} 1.9930$
Step 3: Find k so that $\mathrm{GK}=-1$ at this point
$-->s=-0.9965+j * 1.9930 ;$
-->evalfr(GK,s)

- 0.2073069 - $0.0000010 i$
$-->k=1 / a b s(a n s)$
k =
4.8237668
meaning

$$
K(s)=4.8237\left(\frac{s+1}{s}\right)
$$

Check in VisSim. Note

- The system is quicker than before: cancelling the pole at -1 pulled the root locus left
- The overshoot is 20% - as expected
- The settling time is 4 seconds (the real part of the closed-loop dominant pole is -1)

3) Design a compensator which results in

- No error for a step input
- 20% overshoot for a step input, and
- A 2% settling time of 2 seconds.

Check you answer in VisSim or MATLAB (i.e. take the step response of the closed-loop system).

Translation:

- Make it a type- 1 system
- Place the closed-loop dominant pole at $-2+\mathrm{j} 4$

Step 1: Choose the form of K(s).

- Add a pole at $\mathrm{s}=0$ to make it type 1 .
- Cancel the pole at -1 to speed up the system
- Cancel another pole at -4 to speed it up further
- Add a pole to make the angle add up to 180 degrees at $-2+\mathrm{j} 4$

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1)(s+4)}{s(s+a)}\right) \\
& G K=\left(\frac{100 k}{s(s+a)(s+8)(s+9)}\right)
\end{aligned}
$$

Step 2: Find 'a' so that the angles add up to 180 degrees at $\mathrm{s}=-2+\mathrm{j} 4$

$$
\left(\frac{100}{s(s+8)(s+9)}\right)_{s=-2+j 4}=0.3846 \angle 180^{0}
$$

Ummmm. Talk about dumb luck. What's the change I'd pick a point on the root locs.....

This is actually a probem since is says the angle is already 180 degrees - meaning ($\mathrm{s}+\mathrm{a}$) adds zero degrees. You need an angle > 0 degrees.

Take 2:
Step 1: Choose the form of $\mathrm{K}(\mathrm{s})$. Cancelling two poles didn't work - so cancel another pole.

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1)(s+4)(s+8)}{s(s+a)^{2}}\right) \\
& G K=\left(\frac{100 k}{s(s+a)^{2}(s+9)}\right)
\end{aligned}
$$

Step 2: Find 'a' so that the angles add up to 180 degrees at $\mathrm{s}=-2+\mathrm{j} 4$

$$
\left(\frac{100}{s(s+9)}\right)_{s=-2+j 4}=2.7735 \angle-146.3099^{0}
$$

For the angle to add up to 180 degrees

$$
\angle(s+a)^{2}=33.6901^{0}
$$

$$
\begin{aligned}
& \angle(s+a)=16.8450^{0} \\
& a=\frac{4}{\tan \left(168 \Delta^{\circ}\right)}+{ }^{\circ} \\
& a=15.2111
\end{aligned}
$$

and

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1)(s+4)(s+8)}{s(s+15.2111)^{2}}\right) \\
& G K=\left(\frac{100 k}{s(s+9)(s+15.2111)^{2}}\right)
\end{aligned}
$$

Step 3: Find k so that $\mathrm{GK}=-1$ at s

$$
\begin{aligned}
& \left(\frac{100 k}{s(s+9)(s+15.2111)^{2}}\right)_{s=-2+j 4}=0.0146 \angle 180^{0} \\
& k=\frac{1}{0.0146}=68.6977
\end{aligned}
$$

and

$$
K(s)=68.6977\left(\frac{(s+1)(s+4)(s+8)}{s(s+15.2111)^{2}}\right)
$$

Check in VisSim

4) Design an op-amp circui to impliment $\mathrm{K}(\mathrm{s})$ for problem 3.

$$
K(s)=68.6977\left(\frac{(s+1)(s+4)(s+8)}{s(s+15.2111)^{2}}\right)
$$

Rewrite this as

$$
K(s)=\left(\frac{s+1}{s}\right)\left(\frac{8.29(s+4)}{s+15.2111}\right)\left(\frac{8.29(s+8)}{s+15.2111}\right)
$$

Problem 5-8) Let $G(s)=\left(\frac{100}{s(s+1)(s+4)(s+8)}\right)$
5) Design a lead compensator $\left(K(s)=k\left(\frac{s+a}{s+10 a}\right)\right)$ which results in 20% overshoot for a step input. Check you answer in VisSim or MATLAB (i.e. take the step response of the closed-loop system).
Step 1: Choose the form of K(s).

- Add a zero to cancel the slowest stable pole ($\mathrm{s}=-1$)
- Add a pole 10x left of the zero

$$
\begin{aligned}
& K(s)=k\left(\frac{s+1}{s+10}\right) \\
& G K=\left(\frac{100}{s(s+10)(s+4)(s+8)}\right)
\end{aligned}
$$

Step 2: Find the point on the root locus where the damping ratio is 0.4559

```
-->GK = zp2ss([],[0,-4,-8,-10],100);
-->k = logspace(-2,2,1000)';
-->R = rlocus(GK, k, 0.4559);
```


$\mathrm{s}=-1.0192+\mathrm{j} 2.0385$
Step 3: Find k so that at this point, $\mathrm{GK}=-1$
-->evalfr(GK,s)

$$
-->k=1 / a b s(a n s)
$$

5.5120093
meaning

$$
K(s)=5.512\left(\frac{s+1}{s+10}\right)
$$

Check in VisSim

6) Design a compensator which results in

- No error for a step input
- 20\% overshoot for a step input, and
- A 2% settling time of 2 seconds.

Check you answer in VisSim or MATLAB (i.e. take the step response of the closed-loop system).

Translation:

- Make it a type- 1 system
- Place the closed-loop dominant pole at $-2+\mathrm{j} 4$

Step 1: Choose the form of $K(s)$.

- Cancel the pole at -1 to speed up the system
- Cancel another pole at -4 to speed it up further
- Add a pole to make the angle add up to 180 degrees at $-2+\mathrm{j} 4$

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1)(s+4)}{(s+a)^{2}}\right) \\
& G K=\left(\frac{100 k}{s(s+8)(s+a)^{2}}\right)
\end{aligned}
$$

Checking the angle

$$
\left(\frac{100}{s(s+8)}\right)_{s=-2+j 4}=3.1009 \angle-150.2551^{0}
$$

The angle is off by 29.7449 degrees. For the angles to add up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)^{2}=29.7449^{0} \\
& \angle(s+a)=14.8724^{0} \\
& a=\frac{4}{\tan \left(14.8724^{0}\right)}+2 \\
& a=17.0623
\end{aligned}
$$

and

$$
G K=\left(\frac{100 k}{s(s+8)(s+17.0623)^{2}}\right)
$$

Checking at $\mathrm{s}=-2+\mathrm{j} 4$

$$
\left(\frac{100}{s(s+8)(s+17.0623)^{2}}\right)_{s=-2+j 4}=0.0128 \angle 180^{0}
$$

so

$$
k=\frac{1}{0.0128}=78.3242
$$

and

$$
K(s)=\left(\frac{78.3242(s+1)(s+4)}{(s+17.0623)^{2}}\right)
$$

Check in VisSim

7) Design an op-amp circui to impliment $\mathrm{K}(\mathrm{s})$ for problem 6.

$$
K(s)=\left(\frac{78.3242(s+1)(s+4)}{(s+17.0623)^{2}}\right)
$$

Rewrite this as

$$
K(s)=\left(\frac{7.8242(s+1)}{s+17.0623}\right)\left(\frac{10(s+4)}{s+17.0623}\right)
$$

