ECE 461 - Homework \#9

Systems with delays, lightly damped poles, unstable poles. Due Monday, November 9th
20 points per problem
For each problem, design a compensator, $\mathrm{K}(\mathrm{s})$, which results in

- No overshoot for a step input
- 20% overshoot for a step input, and
- A 2% settling time of 4 seconds

Verify your design in VisSim (or lime program)

1) System with a 200 ms delay

$$
G(s)=\left(\frac{20}{(s+1)(s+2)(s+5)}\right) \cdot e^{-0.2 s}
$$

To meet the design specs,

- Make the system type-1
- Place the closed-loop dominant pole at $-1+\mathrm{j} 2$

Step 1: Pick the form of the compensator. Try

$$
K(s)=k\left(\frac{(s+1)(s+2)}{s(s+a)}\right)
$$

Determine 'a' so that the angles add up to 180 degrees at $\mathrm{s}=-1+\mathrm{j} 2$

$$
\begin{aligned}
& G K=\left(\frac{20}{s(s+5)(s+a)}\right) \cdot e^{-0.2 s} \\
& \left(\left(\frac{20}{s(s+5)}\right) \cdot e^{-0.2 s}\right)_{s=-1+j 2}=2.4428 \angle-166.0484^{0}
\end{aligned}
$$

($\mathrm{s}+\mathrm{a}$) must subtract another 13.9516 degrees for the angle to add up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=13.9516^{0} \\
& a=\frac{2}{\tan \left(120516^{0}\right)}+1 \\
& a=9.0505 \\
& K(s)=k\left(\frac{(s+1)(s+2)}{s(s+9.0505)}\right)
\end{aligned}
$$

To find k, the gain must be -1

$$
\begin{aligned}
& G K=\left(\left(\frac{20}{s(s+5)(s+9.0505)}\right) \cdot e^{-0.2 s}\right)_{s=-1+j 2}=0.2945 \angle 180^{0} \\
& k=\frac{1}{0.2945}=3.3958
\end{aligned}
$$

and

$$
K(s)=3.3958\left(\frac{(s+1)(s+2)}{s(s+9.0505)}\right)
$$

2) Lightly damped system

$$
G(s)=\left(\frac{20}{(s+1)(s+j 2)(s-j 2)}\right)
$$

First, stabilize the system. Add a compensator

$$
K_{1}(s)=k\left(\frac{(s+1)^{2}}{(s+10)^{2}}\right)
$$

Pick a point on the root locus

```
-->GK1 = zp2ss(-1,[-10,-10,j*2,-j*2],20);
-->k = logspace(-2,2,1000)';
-->R = rlocus(G,k);
-->s = -1.2 + j*4
    - 1.2 + 4.i
```

Pick ' k ' so that the gain is one at this point:
-->evalfr(GK1,s)

- 0.0600400 - 0.0017828i
-->1/abs(ans)
16.648228
meaning

$$
K_{1}(s)=16.64\left(\frac{(s+1)^{2}}{(s+10)^{2}}\right)
$$

Find the closed-loop transfer function for this compensator

```
-->G2 = intcon(GK1,16.65)
\(-->[z, p, k]=\operatorname{ss2zp}(G 2)\)
    k =
        333. + 1.951D-13i
    p =
        - \(14.570764+8.882 \mathrm{D}-16 \mathrm{i}\)
        - \(1.2810646+3.9880898 i\)
        - 1.2810646 - \(3.9880898 i\)
        - 2.8671066 - 5.641D-16i
    z =
    - 1. - 1.317D-22i
        \(G_{2}=\left(\frac{G K_{1}}{1+G K_{1}}\right)=\left(\frac{333(s+1)}{\mid s+2.86)(s+1.28+j 3.99)(s+1.28-j 3.99)) s+14.57)}\right)\)
```

Step 2: Now that the system is stable, add a compensator, K2, to meet the design specs. Choose K2 of the form:

$$
K_{2}(s)=k\left(\frac{(s+2.86)(s+1.28+j 3.99)(s+1.28-j 3.99)}{s(s+1)(s+a)}\right)
$$

and

$$
G_{2} K_{2}=\left(\frac{333 k}{s(s+a)(s+14.57)}\right)
$$

Pick 'a' to make the angles add up to 180 degrees at $\mathrm{s}=-1+\mathrm{j} 2$. This results in

$$
a=2.3978
$$

Pick ' k ' to make the gain one at this point. This results in

$$
K_{2}(s)=0.2247\left(\frac{(s+2.86)(s+1.28+j 3.99)(s+1.28-j 3.99)}{s(s+1)(s+2.3978)}\right)
$$

Checking the step response of the resulting system:

3) Unstable System

$$
G(s)=\left(\frac{20}{(s-1)(s+2)(s+5)}\right)
$$

First, add a compensator, K1, to stabilize the system. Let

$$
K_{1}=k\left(\frac{s+2}{s+10}\right)
$$

The root locus of GK1 is

Find a spot that's stable. $\mathrm{s}=-1$ works, so place the dominant pole at $\mathrm{s}=-1$

$$
\begin{aligned}
& -->s=-1 \\
& -->\text { evalfr }(\text { GK1, s) } \\
& -0.2777778 \\
& -->\text { k1 }=1 / \text { abs(ans) } \\
& 3.6
\end{aligned}
$$

meaning

$$
K_{1}=3.6\left(\frac{s+2}{s+10}\right)
$$

$$
G_{2}=\left(\frac{G K_{1}}{1+G K_{1}}\right)=\left(\frac{72}{(s+1)(s+2)(s+11)}\right)
$$

Now, add a second compensator to meet the design specs. Choose K2 of the form

$$
\begin{aligned}
& K_{2}=\left(\frac{(s+1)(s+2)}{s(s+a)}\right) \\
& G_{2} K_{2}=\left(\frac{72 k}{s(s+a)(s+11)}\right)
\end{aligned}
$$

Pick 'a' so that the angles add up to 180 degrees at $\mathrm{s}=-1+\mathrm{j} 2$

$$
\left(\frac{72}{s(s+11)}\right)_{s=-1+j 2}=3.1574 \angle-127.875^{0}
$$

To make the angles add up to 180 degrees, ($\mathbf{s}+\mathrm{a}$) must subtract another 52.125 degrees

$$
a=\frac{2}{\tan \left(52.125^{\circ}\right)}+1=2.5556
$$

Pick ' k ' so that the gain of G2K2 is -1 at $\mathrm{s}=-1+\mathrm{j} 2$

$$
\left(\frac{72}{s(s+2,5556)(s+11)}\right)_{s=-1+j 2}=1.2461 \angle 180^{0}
$$

$$
k_{2}=\frac{1}{1.2461}=0.8025
$$

so

$$
K_{2}=0.8025\left(\frac{(s+1)(s+2)}{s(s+2.5556)}\right)
$$

The net system is then

$$
\left(\frac{G_{2} K_{2}}{1+G_{2} K_{2}}\right)=\left(\frac{57.779}{(s+1+j 2)(s+1-j 2)(s+11.555)}\right)
$$

Checking in VisSim

