ECE 461 - Homework \#11

Discre-Time Compensator Design. Due Monday, November 23rd
Each problem is 20 points
The transfer function for a system is

$$
G(s)=\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)
$$

(heat equation from Homework \#5 and \#10)

Assume a sampling rate of $\mathrm{T}=0.1$ second.

1) Design a discrete-time compensator of the form

$$
\mathrm{K}(\mathrm{z})=\mathrm{k}
$$

which results in

- 20\% overshoot for a step input.

Check your design in VisSim

For 20\% overshoot, the solution lies along the line

$$
s=-1+j 2
$$

Doing a numerical search

$$
\begin{aligned}
& \left(\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)\left(e^{-s T / 2}\right)(k)\right)_{s=\alpha(-1+j 2)}=1 \angle 180^{0} \\
& \mathrm{~s}=-1.6197+\mathrm{j} 3.2395 \\
& \mathrm{z}=0.5767+\mathrm{j} 0.4365
\end{aligned}
$$

At this point

$$
\left(\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)\left(e^{-s T / 2}\right)\right)_{s=-1.6197+j 3.2395}=0.2244 \angle 180^{0}
$$

so

$$
k=\frac{1}{0.2244}=4.4560
$$

2) Design a discrete-time PI compensator of the form

$$
K(z)=k\left(\frac{z-a}{z-1}\right)
$$

which results in

- No error for a stp input and
- 20% overshoot for a step input.

Check your design in VisSim

Pick 'a' to cancel the pole at

$$
\begin{aligned}
& \mathrm{s}=-1.31 \\
& \mathrm{z}=e^{s T}=0.8772 \\
& K(\mathrm{z})=k\left(\frac{z-0.8772}{z-1}\right)
\end{aligned}
$$

Find the point where

$$
\left(\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)\left(e^{-s T / 2}\right)\left(k\left(\frac{z-0.8772}{z-1}\right)\right)\right)_{s=\alpha(-1+j 2)}=1 \angle 180^{0}
$$

Iterating

$$
\begin{aligned}
& s=-1.4659+j 2.9318 \\
& z=0.6213+j 0.4127
\end{aligned}
$$

At this point

$$
\left(\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)\left(e^{-s T / 2}\right)\left(\frac{z-0.8772}{z-1}\right)\right)_{s-1.4659+j 2.9318}=-0.2124
$$

so

$$
k=\frac{1}{0.2124}=4.7081
$$

Checking in SciLab

The input peaks at only $2 x$ its steady-state value. This means you need to size the motor a little more than what's required for steady-state operation. It also suggests you can speed up the system a little more.
3) Design a discrete-time compensator $\mathrm{K}(\mathrm{z})$ which results in

- No error for a stp input and
- 20% overshoot for a step input.
- A 2% settling time of 1 second

Check your design in VisSim
Translating

- Add a pole at $s=0$ to make it type- 1
- Place the dominant pole at $\mathrm{s}=-4+\mathrm{j} 8$
or in the z-plane
- Add a pole at $\mathrm{z}=+1$ to make it type- 1
- Place the dominant pole at $\mathrm{z}=0.4670+\mathrm{j} 0.4809$

Start with cancelling two poles and see if that works

$$
K(z)=\left(\frac{(z-0.8772)(z-0.5650)}{(z-1)(z-a)}\right)
$$

Evaluating at the design point:

$$
\left(\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)\left(e^{-s T / 2}\right)\left(\frac{(z-0.8772)(z-0.5650)}{(z-1)}\right)\right)_{s=-4+j 8}=0.0255 \angle-187.93^{0}
$$

The phase is past 180 degrees - so it won't work. Try cancelling another pole

$$
K(z)=\left(\frac{(z-0.8772)(z-0.5650)(z-0.2879)}{(z-1)(z-a)^{2}}\right)
$$

Evaluating at the design point:

$$
\left(\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)\left(e^{-s T / 2}\right)\left(\frac{(z-0.8772)(z-0.5650)(z-0.2879)}{(z-1)}\right)\right)_{s=-4+j 8}=0.0128 \angle-118^{0}
$$

Since three zeros are added, add three poles (one at $\mathrm{z}=+1$, the others at....)
The angle 61.63 degrees away from 180 degrees
Each of the two poles at 'a' add 30.81 degrees

$$
a=0.4670-\left(\frac{0.4809}{\tan \left(30.81^{0}\right)}\right)=-0.3392
$$

so

$$
K(z)=\left(\frac{(z-0.8772)(z-0.5650)(z-0.2879)}{(z-1)(z+0.3392)^{2}}\right)
$$

To find k

$$
\left(\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right)\left(e^{-s T / 2}\right)\left(\frac{(z-0.8772)(z-0.5650)(z-0.2879)}{(z-1)(z+0.3392)^{2}}\right)\right)_{s=-4+j 8}=-0.0145
$$

$$
k=\frac{1}{0.0145}=68.798
$$

$$
K(z)=68.798\left(\frac{(z-0.8772)(z-0.5650)(z-0.2879)}{(z-1)(z+0.3392)^{2}}\right)
$$

Checking in VisSim

Note that to speed up the system 3x (3 seconds in problem 2 to 1 second in problem 3) the input went from a peak of

- 5.5 in problem \#2 (1.1 x 5) to
- 344 in problem \#3 (68 x 5)
(it took 62 times more input for a factor of 3 increase in speed).
You can make a system faster than it's open-loop step response - but at a high cost.
A settling time of 1 second works on paper but probably won't work in practice.

4) Write a program to implement the compensator for problem \#3
```
while(1) {
    x3 = x2;
    x2 = x1;
    x1 = x0;
    x0 = A2D_Read(0);
    y3 = y2;
    y2 = y1;
    y1 = y0;
    y0 = 0.3216*y1 + 0.5633434*y2 + 0.1150566*y3 +
        68.798*(x0 -1.7301*x1 + 0.9108274*x2 - 0.1426884*x3);
    D2A(y0);
    Wait_100ms();
    }
```

