ECE 461 - Homework #11

Discre-Time Compensator Design. Due Monday, November 23rd
Each problem is 20 points

The transfer function for a system is

B 625
G(s) = ((s+1.31)(s+5.71)(s+12.45)(s+18.37))

(heat equation from Homework #5 and #10)

Assume a sampling rate of T = 0.1 second.

1) Design a discrete-time compensator of the form
K(z) =k
which results in

« 20% overshoot for a step input.
Check your design in VisSim

For 20% overshoot, the solution lies along the line
s=-1+j2

Doing a numerical search

625 _
(((s+1.31)(s+5.71)(s+12.45)(s+18.37)) (¢ Sm)(k)) =1,180°

s=o(—1+j2)

s=-1.6197 +j3.2395
z=0.5767 +j0.4365
At this point

((625) (e—sT/2)> =0.2244,180°

(s+1.31)(s+5.71)(s+12.45)(s+18.37) o= 1.6107+{3.2305

SO

k=—1— =4.4560

= 0.2244

+ 1 625
g 4456 — pU—» 1 MY
1 i’ s'+37.84s7+452 54357 +1836.0563s+1710.7475 i’
Iy’
L |
et
1 3 H H H H H
I - I 12 ,,,
L T T T S SOt RS SO SRt SRRSO SRS SN
8) S S O MO OO NS SRt NN S
1]
V]) S U U SR OO SUUUOU: SOOI SOUNOU SN
(T S N S

2 4 6 8 1 1.2 14 1.6 1.8 2 22 24 26 28 3
Time (sec)

2) Design a discrete-time Pl compensator of the form

K(z) = k(ﬁ)

which results in

+ No error for a stp input and
-+ 20% overshoot for a step input.

Check your design in VisSim

Pick "a' to cancel the pole at
s=-131
z=e%T =0.8772

_ [208772
K(z)—k(1)
Find the point where

625 - ~0.8772
(((s+1.3l)(s+5.71)(s+12.45)(s+18.37)) C ST/Z)(k(Z -1))) =1.180°

s=a(—14j2)

Iterating
s =-1.4659 +j2.9318
z=0.6213 + j0.4127
At this point

625) _sT/2 (z—o.sm)) _
e — = =-0.2124
(s+1.31)(5+5.71)(s+12.45)(5+18.37) () & 14650+j2.0318

SO
k=—— =4.7081

0.2124
Checking in SciLab

+ 28772 625
w5 4.7081 U1 MY |-

z1 s'+37.8457+452.5435°+1836.05635+1710.7475

0 2 4 6 8 1 1.2 14 1.6 1.8 2 22 24 26 28 3
Time (sec)

The input peaks at only 2x its steady-state value. This means you need to size the motor a little more than
what's required for steady-state operation. It also suggests you can speed up the system a little more.

3) Design a discrete-time compensator K(z) which results in

« No error for a stp input and
-« 20% overshoot for a step input.
« A 2% settling time of 1 second

Check your design in VisSim

Translating

- Add a pole at s = 0 to make it type-1
 Place the dominant pole at s = -4 + |8

or in the z-plane

- Add apole at z = +1 to make it type-1
- Place the dominant pole at z = 0.4670 + j0.4809

Start with cancelling two poles and see if that works

_ { (z-0.8772)(2-0.5650)
K@) _(@ Dza))

Evaluating at the design point:

625 T2 (270.8772)(270.5650))) _ _ 0
(((s+1.31)(s+5.71)(s+12.45)(s+18.37)) (€)((z-1) o dijs 0.02557 - 187.93

The phase is past 180 degrees - so it won't work. Try cancelling another pole

_ (z—0.8772)(z—0.5650)(2—0.2879))
K@) = ((z-1)(z-a)2

Evaluating at the design point:

625 T2 (270.8772)(270.5650)(270.2879))) _ 11Q0
(((s+1.31)(s+5.71)(s+12.45)(s+18.37)) (e)((z-1) s=44j8 =0.01282-118

Since three zeros are added, add three poles (one at z = +1, the others at....)
The angle 61.63 degrees away from 180 degrees
Each of the two poles at 'a’ add 30.81 degrees

a=0.4670 - [— 04809 J =-0.339;

tan(30.810)

SO

_ (z—0.8772)(z—0.5650)(2—0.2879))
K@) = ((z-1)(z+0.3392)2

To find k

625 _sT/2 ((Z—O.8772)(2—0.5650)(2—0.2879))) _
(() (€) (z-1)(2+0.3392)?2 =-0.0145

(s+1.31)(5+5.71)(s5+12.45)(s+18.37) 418
_ 1 _
k= 01aE = 68.798

(z—O.8772)(2—0.5650)(2—0.2879))

K@) = 68'798((2—1)(2+0.3392)?

Checking in VisSim

+ 2-1.73012°+.91082742- 1426884 625
£ 0 68.798 — - U F—» 1 - >
Z-.32162"- 5633434z-.1150566 s'+37 845 +452 543s°+1836.05635+1710.7475
<1 14
N]

0 2 4 6 8 1 1.2 1.4 1.6 1.8 2 22 24
Time (sec)

Note that to speed up the system 3x (3 seconds in problem 2 to 1 second in problem 3) the input went

from a peak of

- 5.5inproblem#2 (1.1 x5)to
« 344 in problem #3 (68 x 5)

(it took 62 times more input for a factor of 3 increase in speed).
You can make a system faster than it's open-loop step response - but at a high cost.

A settling time of 1 second works on paper but probably won't work in practice.

4) Write a program to implement the compensator for problem #3

while(1) {
X3 = X2;
X2 = x1;
X1 = x0;
X0 = A2D Read(0);
y3 = y2;
y2 = yl;
yl = yO0;
y0 = 0.3216*yl + 0.5633434*y2 + 0.1150566*y3 +
68.798*(x0 -1.7301*x1 + 0.9108274*x2 - 0.1426884*x3);
D2A(y0);

Wait_100msQ);

