Final: ECE 461 / 661: Name

Closed Book. Closed Notes. Calculators Permitted.

1) Determine the system with the following step response:

$$
G(s)=
$$

2a) Determine $y(t)$ given

$$
\begin{aligned}
& Y=\left(\frac{20}{(s+2)(s+5)}\right) X \\
& x(t)=2+3 \cos (4 t)
\end{aligned}
$$

2b) Determine $y(t)$ given

$$
\begin{aligned}
& Y=\left(\frac{20}{(s+2)(s+5)}\right) X \\
& x(t)=2 u(t)
\end{aligned}
$$

3) The root locus for

$$
G(s)=\left(\frac{2 s}{(s+j 2)(s-j 2)(s+4)(s+6)}\right)
$$

is shown below. Determine the following:

Real Axis Loci		\# Asymptotes	
jw Crossing		Asymptote Angles	
Departure Angle from the Pole at j2		Asymptote Intersect	

4) The root locus for

$$
G(s)=\left(\frac{10}{(s+1)(s+5)(s+10)}\right)
$$

is shown below. Determing a gain compensator, $\mathrm{K}(\mathrm{s})=\mathrm{k}$, which results in 20% overshoot for a step input. For this value of k, determine the following:

k	
Closed-Loop Dominant Pole(s)	
Error Constant, Kp	

5) Compensator Design: For the system

$$
G(s)=\left(\frac{10}{(s+1)(s+5)(s+10)}\right)
$$

design a compensator, $K(s)$, which results in

- No error for a step input, and
- A Closed-Loop Dominant pole at $\mathrm{s}=-3+\mathrm{j} 4$
$K(s)=$

6) Compensator Design: For the system

$$
G(s)=\left(\frac{10}{(s+1)(s+5)(s+10)}\right)
$$

design a compensator, $\mathrm{K}(\mathrm{s})$, which results in

- No error for a step input,
- A 0 dB Gain Frequency of $4 \mathrm{rad} / \mathrm{sec}$, and
- A 60 degree phase margin

$$
K(s)=
$$

7a) Design a circuit to implement K (s)

$$
K(s)=10\left(\frac{(s+2)(s+3)}{s(s+7)}\right)
$$

7b) Determine a discrete-time compensator, $\mathrm{K}(\mathrm{z})$, which corresponds to $\mathrm{K}(\mathrm{s})$. Assume a sampling rate of $10 \mathrm{~ms}(\mathrm{~T}=0.01)$.

$$
K(s)=10\left(\frac{(s+2)(s+3)}{s(s+7)}\right)
$$

Bonus! Three of the following are U.S. Senators, three are monsters who faced Godzilla. Which are the Senators?

Biollante - Cornyn - Destroyah - Murkowski - Shaheen - Varan

