ECE 461/661 - Homework Set \#11

Root Locus in the z-plane - Due Monday, November 21st 20 points per problem

A 4th-order model for the 10-stage RC filter from homework \#6 is

$$
G(s) \approx\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right)
$$

Assume a sampling rate of 0.1 second ($\mathrm{T}=0.1$);

1) Gain Compensation: Design a digital compensator

$$
K(z)=k
$$

which results in 20% overshoot for a step input. For this value of $K(z)$, give

- The resulting closed-loop dominant pole
- The step response of the closed-loop system.

2) Lead Compensation: Design a digital compensator

$$
K(z)=k\left(\frac{z-a}{z-b}\right)
$$

which results in 20% overshoot for a step input. For this value of $\mathrm{K}(\mathrm{z})$, give

- The resulting closed-loop dominant pole(s)
- The step response of the closed-loop system, and

3) I Compensation: Design a digital compensator

$$
K(z)=k\left(\frac{z}{z-1}\right)
$$

which results in 20% overshoot for a step input. For this value of $\mathrm{K}(\mathrm{z})$, give

- The resulting closed-loop dominant pole(s)
- The step response of the closed-loop system, and

4) PI Compensator: Designa digital compensator

$$
K(z)=k\left(\frac{z-a}{z-1}\right)
$$

which results in 20% overshoot for a step input. For this value of $K(z)$, give

- The resulting closed-loop dominant pole(s)
- The step response of the closed-loop system, and

