Homework \#2: ECE 461 / 661

State Transitional Logic - Counters - Timers:. Due Wednesday, September 7th
A stoplight is to be designed with four states:

Present State		Duration	Next State	Red	Yellow	Green	Blue (left turn arrow)
00	Stop	5 sec	Left Turn	on	off	off	off
01	Left Turn	4 sec	Go	off	off	off	on
11	Go	5 sec	Caution	off	off	on	on
10	Caution	2 sec	Stop	off	on	off	off

1a) Use state transitional logic to design a ring counter which changes from state-to-state according to the above table. Change whenever a button is pressed.

$$
\begin{aligned}
& S_{A}=C L K \cdot B \\
& R_{A}=C L K \cdot \bar{B}
\end{aligned}
$$

$$
S_{B}=C L K \cdot \bar{A}
$$

$$
R_{B}=C L K \cdot A
$$

1b) Use combinational logic so that the LEDs are on and off in the correct order based upon the present state.

$$
\begin{aligned}
& \text { Red }=\bar{A} \cdot \bar{B} \\
& \text { Yellow }=A \cdot \bar{B} \\
& \text { Green }=A \cdot B \\
& \text { Blue }=\bar{A} \cdot B+A \cdot B=B
\end{aligned}
$$

Resulting Ladder Logic Program: With state-transition logic, this is a 10-line program. (note: you need additional logic to create the clock pulse if you want to automate the clock operator)

State Transition Logic:

Outputs (lights)

2) Repeat problem \#1 using timer blocks.

With timer blocks, this is a 5-line program. More if you want the left turn arrow to blink on green (more on this later)

3) Repeat problem \#1 using counter blocks with a count to 16 (seconds - one cycle):

Time		Red	Yellow	Green	Blue
Red Light (5 sec)	0	on	off	off	off
	1	on	off	off	off
	2	on	off	off	off
	3	on	off	off	off
	4	on	off	off	off
Left Turn (4 sec)	5	off	off	off	on
	6	off	off	off	on
	7	off	off	off	on
	8	off	off	off	on
Green Blink Left Turn (5 sec)	9	off	off	on	off
	10	off	off	on	on
	11	off	off	on	off
	12	off	off	on	on
	13	off	off	on	off
$\begin{aligned} & \text { Yellow } \\ & (2 \mathrm{sec}) \end{aligned}$	14	off	on	off	off
	15	off	on	off	off

Solution: With counters, this is a 5-line program. 6 if you want a clock pulse to happen every second.
Rung 1: Count to 16 and repeat
Rung 2: The red light is on when the count is less than or equal to 4

Rung 3: The turn arrow (blue) is on when the count is

- Between 5 and 8,
- or equal to 10
- or equal to 12

Rung 4: Green light is on if the count is between 9 and 13
Rung 5: Yellow light is on if the count is 14 or 15 (more than 13)

Rung 6: (optional) If you want to autmoate the clock so that it pulses once per second (rather than manually hitting it)

Manual clock is nice for debugging
Automate clock is nice for operation

