ECE 461/661 - Homework Set \#8

Gain, Lead, PID Compensators - Due Monday, October 31st 20pt / problem

A 4th-order model for the 10 -stage RC filter from homework \#6 is

$$
G(s) \approx\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right)
$$

1) Design a gain compensator, $K(s)=k$, which results in 20% overshoot for a step input. For this value of K(s), give

- The resulting closed-loop dominant pole(s)
- The error constant, Kp
- The step response of the closed-loop system.

First, draw the root locus of $\mathrm{G}(\mathrm{s})$: (zoomed in for the dominant part of the root locus)

Find the point on the root locus that intersects the damping line:

$$
s=-0.7932+j 1.5864
$$

Find k so that $\mathrm{GK}=-1$ at this point

$$
\begin{aligned}
& \left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right)_{s=-0.7932+j 1.5864}=0.1342 \angle 180^{0} \\
& k=\frac{1}{0.1342}=7.450
\end{aligned}
$$

The resulting closed-loop dominant pole(s)

$$
s=-0.7932+j 1.5864
$$

The error constant, Kp

$$
(G K)_{s=0}=(0.42168)(7.450)=3.1415
$$

$$
K p=3.1415
$$

The Steady-State Error for a Step Input:

$$
\frac{1}{K_{p}+1}=0.2414
$$

The step response of the closed-loop system.

2) Design a lead compensatro, $K(s)=k\left(\frac{s+a}{s+10 a}\right)$, which results in 20% overshoot for a step input.

Keep the pole at $s=0.4234$
Cancel the pole at -2.181

$$
\begin{aligned}
& K(s)=k\left(\frac{s+2.181}{s+21.81}\right) \\
& G K=\left(\frac{22}{(s+10.2)(s+5.539)(s+21.81)(s+0.4234)}\right)
\end{aligned}
$$

Sketch the root locus of GK (zoomed in)

Find the point that intersects the damping line:

$$
s=-1.6271+j 3.2542
$$

At this point, pick 'k' so that GK = -1

$$
\begin{aligned}
& \left(\frac{22}{(s+10.2)(s+5.539)(s+21.81)(s+0.4234)}\right)_{s=-1.6271+j 3.2542}=0.0066 \angle 180^{0} \\
& k=\frac{1}{0.0066}=150.44
\end{aligned}
$$

and

$$
K(s)=150.44\left(\frac{s+2.181}{s+21.81}\right)
$$

For this value of $K(s)$, give
The resulting closed-loop dominant pole(s)

$$
s=-1.6271+j 3.2542
$$

The error constant, Kp

$$
K_{p}=(G K)_{s \rightarrow 0}=(0.42168)(15.044)=6.34
$$

The steady-state error for a step input is smaller

$$
\frac{1}{K_{p}+1}=0.1362
$$

The step response of the closed-loop system, and

A circuit to implement $K(s)$

3) Design a I compensator, $K(s)=\left(\frac{k}{s}\right)$, which results in 20% overshoot for a step input.

$$
G K=\left(\frac{22 k}{s(s+0.4234)(s+2.181)(s+5.539)(s+10.2)}\right)
$$

Sketch the root locus of GK

Find the spot on the root locus that intercepts the damping line

$$
s=-0.1565+j 0.3129
$$

Find ' k ' so that GK $=-1$ at this point

$$
\begin{aligned}
& \left(\frac{22}{s(s+0.4234)(s+2.181)(s+5.539)(s+10.2)}\right)_{s=-0.1565+j 0.3129}=1.377 \angle 180^{0} \\
& k=\frac{1}{1.377}=0.7260
\end{aligned}
$$

and

$$
K(s)=\left(\frac{0.7260}{s}\right)
$$

For this value of $K(s)$, give
The resulting closed-loop dominant pole(s)

$$
s=-0.1565+j 0.3129
$$

The error constant, Kp

```
Kp = infinity (type-1 system)
```

The step response of the closed-loop system, and

A circuit to implement $\mathrm{K}(\mathrm{s})$

4) Design a PI compensator, $K(s)=k\left(\frac{(s+a)}{s}\right)$, which results in 20% overshoot for a step input. Cancel the slowest stable pole

$$
\begin{aligned}
& K(s)=k\left(\frac{s+0.4234}{s}\right) \\
& G K=\left(\frac{22 k}{s(s+2.181)(s+5.539)(s+10.2)}\right)
\end{aligned}
$$

Sketch the root locus

Find the spot on the root locus that intercepts the damping line

$$
s=-0.6546+j 1.3092
$$

Pick ' k ' so that GK $=-1$ at this point

$$
\begin{aligned}
& \left(\frac{22 k}{s(s+2.181)(s+5.539)(s+10.2)}\right)_{s=-0.6546+j 1.3092}=0.1534 \angle 180^{0} \\
& k=\frac{1}{0.1534}=6.5187
\end{aligned}
$$

so

$$
K(s)=6.5187\left(\frac{s+0.4234}{s}\right)
$$

For this value of K(s), give
The resulting closed-loop dominant pole(s)

$$
s=-0.6546+j 1.3092
$$

The error constant, Kp

Kp = infinity (type-1 system)

The step response of the closed-loop system, and

A circuit to implement $\mathrm{K}(\mathrm{s})$

5) Design a PID compensator, $K(s)=k\left(\frac{(s+a)(s+b)}{s}\right)$, which results in 20% overshoot for a step input. Cancel the two slowest poles

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.4234)(s+2.181)}{s}\right) \\
& G K=\left(\frac{22 k}{s(s+5.539)(s+10.2)}\right)
\end{aligned}
$$

Sketch the root locus

Find the spot on the root locus that intersects the damping line:

$$
\mathrm{s}=-1.7027+\mathrm{j} 3.4055
$$

Pick ' k ' so that $\mathrm{GK}=-1$ at this point

$$
\begin{aligned}
& \left(\frac{22 k}{s(s+5.539)(s+10.2)}\right)_{s=-1.7027+j 3.4055}=0.1230 \angle 180^{0} \\
& k=\frac{1}{0.1230}=8.1269 \\
& K(s)=8.1269\left(\frac{(s+0.4234)(s+2.181)}{s}\right)
\end{aligned}
$$

For this value of $K(s)$, give
The resulting closed-loop dominant pole(s)

$$
s=-1.7027+j 3.4055
$$

The error constant, Kp
Kp = infinity (type-1 system)

The step response of the closed-loop system,
VisSim and MatLab don't like $\mathrm{K}(\mathrm{s})$ since it itn't a proper transfer function (more zeros than poles). Approximate K(s) as

$$
K(s)=8.1269\left(\frac{(s+0.4234)(s+2.181)}{s}\right)\left(\frac{100}{s+100}\right)
$$

A circuit to implement K (s)

