ECE 461/661 - Homework Set \#10

z-Transform, Converting G(s) to G(z). Due November 14th.

Assume a sampling rate of 10 ms .

- Determine a digital filter, $G(z)$, which has approximately the same step response as $G(s)$.
- Verify your design by plotting the step response of $G(s)$ and $G(z)$

1) $G(s)=\left(\frac{10}{(s+1)(s+2)}\right)$

$$
\begin{aligned}
& -->s=[-1 ;-2] ; \\
& -->T=0.01 ;{ }^{*}=\exp \left(s^{*} T\right) \\
& \\
& \quad 0.9900498 \\
& 0.9801987 \\
& -->D C=5 . \\
& -->k=D C *(1-z(1))^{*}(1-z(2)) \\
& \quad 0.0009851 \\
& \quad G(z)=\left(\frac{0.0009851}{(z-0.9900)(z-0.9801)}\right)
\end{aligned}
$$

Now, add zeros at $\mathrm{z}=0$ to get the delay 'correct'. At $\mathrm{s}=\mathrm{j} 1$

$$
\begin{aligned}
& \left(\frac{10}{(s+1)(s+2)}\right)_{s=j 1}=3.1623 \angle-71.56^{0} \\
& \left(\frac{0.0009851}{(z-0.9900)(z-0.9801)}\right)_{z=e^{j 1 \cdot T}}=3.1418 \angle-71.88^{0}
\end{aligned}
$$

The phase is off by 0.32 degrees. Each zero at $\mathrm{z}=0$ adds 0.573 degrees

$$
Z=e^{j 1 \cdot T}=1 \angle 0.573^{0}
$$

So, we need to add 0.55 zeros. Round to one

$$
G(z)=\left(\frac{0.0009851 z}{(z-0.9900)(z-0.9801)}\right)
$$

Checking in VisSim

2) $G(s)=\left(\frac{10}{s(s+5)}\right)$

$$
\begin{array}{ll}
s=0 & z=-1 \\
s=-5 & z=0.9512
\end{array}
$$

so

$$
G(z) \approx\left(\frac{a}{(z-1)(z-0.9512)}\right)
$$

The DC gain is infinity - so avoid DC. Picking another point, like

$$
\begin{aligned}
& \mathrm{s}=0.01 \\
& \mathrm{Z}=e^{s T}=1.0001
\end{aligned}
$$

gives

$$
\begin{aligned}
& \left(\frac{10}{s(s+5)}\right)_{s=0.01}=199.60 \\
& \left(\frac{a}{(z-1)(z-0.9512)}\right)_{z=1.0001}=199.60 \\
& a=0.000976
\end{aligned}
$$

To match the number of zeros at $\mathrm{z}=0$, find the gain at $\mathrm{s}=\mathrm{j} 1$

$$
\begin{aligned}
& \left(\frac{10}{s(s+5)}\right)_{s=j}=1.9612 \angle-101.31^{0} \\
& \left(\frac{0.000976}{(z-1)(z-0.9512)}\right)_{z=e^{j 0.01}}=1.9612 \angle-101.88^{0}
\end{aligned}
$$

The gain matches, the phase is off by 0.5685 degrees. To match the phase, add zeros at $\mathrm{z}=0$. Each zero adds 0.573 degrees, so the number of zeros you need is

$$
n=\left(\frac{0.5685^{0}}{0.5730^{0}}\right)=0.9922
$$

Let $\mathrm{n}=1$

$$
G(z) \approx\left(\frac{0.000976 z}{(z-1)(z-0.9512)}\right)
$$

Checking in VisSim

3) $G(s)=4\left(\frac{s+2}{s+4}\right)$
$s=-2:$

$$
z=0.9802
$$

s-04

$$
\mathrm{z}=0.9608
$$

so

$$
G(z)=a\left(\frac{z-0.9802}{z-0.9608}\right)
$$

Matching the DC gain

$$
\begin{aligned}
& 4\left(\frac{s+2}{s+4}\right)_{s=0}=2 \\
& a\left(\frac{z-0.9802}{z-0.9608}\right)_{z=1}=2 \\
& a=3.9596
\end{aligned}
$$

$$
G(z)=3.9596\left(\frac{z-0.9802}{z-0.9608}\right)
$$

4) $G(s)=\left(\frac{104}{(s+2+j 10)(s+2-j 10)}\right)$
$s=-2+j 10$

$$
\begin{aligned}
& \mathrm{z}=e^{s T}=0.9802 \angle 5.7296^{0} \\
& G(\mathrm{z})=\left(\frac{a}{\left(\mathrm{z}-0.9802 \angle 5.7296^{0}\right)\left(\mathrm{z}-0.9802 \angle-5.7296^{0}\right)}\right)
\end{aligned}
$$

Matching the DC gain

$$
\begin{aligned}
& \left(\frac{104}{(s+2+j 10)(s+2-j 10)}\right)_{s=0}=1 \\
& \left(\frac{a}{\left(z-0.9802 \angle 5.7296^{0}\right)\left(z-0.9802 \angle-5.7296^{0}\right)}\right)_{z=1}=1 \\
& a=0.0101859
\end{aligned}
$$

To find the number of zeros at $\mathrm{z}=0$

$$
\begin{aligned}
& \left(\frac{104}{(s+2+j 10)(s+2-j 10)}\right)_{s=j}=1.0089 \angle-2.2240^{0} \\
& \left(\frac{0.0101859}{\left(z-0.9802 \angle 5.7296^{0}\right)\left(z-0.9802 \angle-5.7296^{0}\right)}\right)_{z=e^{j 0.01}}=1.0090 \angle-2.7988^{0}
\end{aligned}
$$

The phase is off by 0.5749 degrees. The number of zeros to add at $z=0$ is then

$$
n=\left(\frac{0.5749^{0}}{0.5730^{0} / \text { zero }}\right)=1.0034
$$

Let $\mathrm{n}=1$

$$
G(z)=\left(\frac{0.0101859 z}{\left(z-0.9802 \angle 5.7296^{0}\right)\left(z-0.9802 \angle-5.7296^{0}\right)}\right)
$$

5) Write a program to implement the following system. Assume a sampling rate of 10 ms .

$$
Y=\left(\frac{0.01 z}{(z-1)(z-0.9)(z-0.5)}\right) X
$$

Multiply out. In Matlab

$$
\begin{aligned}
& \gg \operatorname{poly}([1,0.9,0.5]) \\
& \text { ans }= \\
& \quad 1.0000 \quad-2.4000 \quad 1.8500 \quad-0.4500 \\
& \gg \\
& \qquad Y=\left(\frac{0.01 z}{z^{3}-2.4 z^{2}+1.85 z-0.45}\right) X \\
& \quad\left(z^{3}-2.4 z^{2}+1.85 z-0.45\right) Y=(0.01 z) X \\
& \quad y(k+3)-2.4 y(k+2)+1.85 y(k+1)-0.45 \mathrm{y}(\mathrm{k})=0.01 \mathrm{x}(\mathrm{k}+1) \\
& \quad \mathrm{y}(\mathrm{k}+3)=2.4 \mathrm{y}(\mathrm{k}+2)-1.85 \mathrm{y}(\mathrm{k}+1)+0.45 \mathrm{y}(\mathrm{k})+0.01 \mathrm{x}(\mathrm{k}+1)
\end{aligned}
$$

Time shift by 3

$$
\mathrm{y}(\mathrm{k})=2.4 \mathrm{y}(\mathrm{k}-1)-1.85 \mathrm{y}(\mathrm{k}-2)+0.45 \mathrm{y}(\mathrm{k}-3)+0.01 \mathrm{x}(\mathrm{k}-2)
$$

Write the C code

```
while(1) {
x3 = x2; // x(k-3)
x2 = x1; // x(k-2)
x1 = x0; // x(k-1)
x0 = A2D_Read(0); // x(k)
y3 = y2; // y(k-3)
y2 = y1; // y(k-2)
y1 = y0; // y(k-1)
y0 = 2.4*y1 - 1.85*y2 + 0.45*y3 + 0.01*x2;
D2A(y0);
Wait_10ms();
}
        y(k+3) =
```

