ECE 461/661 - Homework Set \#11

Root Locus in the z-plane - Due Monday, November 21st 20 points per problem

A 4th-order model for the 10-stage RC filter from homework \#6 is

$$
G(s) \approx\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right)
$$

Assume a sampling rate of 0.1 second ($\mathrm{T}=0.1$);

1) Gain Compensation: Design a digital compensator

$$
K(z)=k
$$

which results in 20% overshoot for a step input. For this value of $K(z)$, give

- The resulting closed-loop dominant pole
- The step response of the closed-loop system.

Method 1) Convert to the z-plane. The DC gain is 0.4217

$$
G(z) \approx\left(\frac{0.000933 z^{2}}{(z-0.9585)(z-0.8040)(z-0.5747)(z-0.3606)}\right)
$$

Draw the root locus and find the spot that hits the 0.4559 damping line

Find the spot on the root locus that intersects the damping line:

$$
\mathrm{z}=0.9133+\mathrm{j} 0.1443
$$

Pick k so that GK $=-1$ at this point

$$
\begin{aligned}
& \left(\frac{0.000933 z}{(z-0.9585)(z-0.8040)(z-0.5747)(z-03606)}\right)_{z=0.9133+j 0.1443}=-0.1386 \\
& k=\frac{1}{0.1386}=7.215
\end{aligned}
$$

Method \#2: Search along the damping line so that

$$
\begin{aligned}
& \operatorname{angle}\left(\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right) \cdot e^{-0.05 s}\right)_{s=a(-1+j 2)}=180^{0} \\
& s=-0.7554+j 1.5108 \\
& \mathrm{z}=e^{s T}=0.9167+0.1396
\end{aligned}
$$

At this point

$$
\begin{aligned}
& \left(\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right) \cdot e^{-0.05 s}\right)_{s=-0.7554+j 1.5108}=0.1482 \angle 180^{0} \\
& k=\frac{1}{0.1482}=6.7480
\end{aligned}
$$

Check in VisSim:

2) Lead Compensation: Design a digital compensator

$$
K(z)=k\left(\frac{z-a}{z-b}\right)
$$

which results in 20% overshoot for a step input. For this value of $K(z)$, give

- The resulting closed-loop dominant pole(s)
- The step response of the closed-loop system, and

Method \#1) Find G(z)

$$
G(z) \approx\left(\frac{0.000933 z^{2}}{(z-0.9585)(z-0.8040)(z-0.5747)(z-0.3606)}\right)
$$

Keep the pole at 0.9585 . Add $K(z)$ to cancel the next slowest pole

$$
K(z)=\left(\frac{z-0.8040}{z}\right)
$$

Sketch the root locus of $\mathrm{G}^{*} \mathrm{~K}$

Find the point which intersects the damping line

$$
\mathrm{z}=0.8015+\mathrm{j} 0.2665
$$

Method \#2: For the same reasons, let

$$
\begin{aligned}
& K(s)=\left(\frac{s+2.181}{s+21.81}\right) \\
& K(z)=\left(\frac{z-0.8040}{z-0.1129}\right)
\end{aligned}
$$

Find the point on the root locus that intersects the damping line

$$
\operatorname{ang}\left[\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{z-0.8040}{z-0.1129}\right)\right]_{s=-a+j 2 a}=180^{0}
$$

results in

$$
\begin{aligned}
& s=-1.4129+j 2.8258 \\
& z=0.8338+j 0.2421
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \left(\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{z-0.8040}{z-0.1129}\right)\right)_{s}=-0.0187 \\
& k=\frac{1}{0.0187}=53.44
\end{aligned}
$$

and

$$
K(z)=53.44\left(\frac{z-0.8040}{z-0.1129}\right)
$$

Checking in VisSim

3) I Compensation: Design a digital compensator

$$
K(z)=k\left(\frac{z}{z-1}\right)
$$

which results in 20% overshoot for a step input. For this value of $K(z)$, give

- The resulting closed-loop dominant pole(s)
- The step response of the closed-loop system, and

Method \#1: Draw the root locus of $\mathrm{G}(\mathrm{z}) * \mathrm{~K}(\mathrm{z})$

$$
\left(\frac{0.000933 z^{2}}{(z-0.9585)(z-0.8040)(z-0.5747)(z-0.3606)}\right)\left(\frac{z}{z-1}\right)
$$

Find the point that intersects the damping line
At this point, make $G^{*} K=-1$

Method \#2: Solve numerically. Search along the damping line untin the angle is 180 degrees:
$\operatorname{ang}\left[\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{z}{z-1}\right)\right]_{s=-a+j 2 a}=180^{0}$
This gives

$$
\begin{aligned}
& s=-0.1565+j 0.3129 \\
& z=0.9840+j 0.0308
\end{aligned}
$$

At this point, GK $=-1$

$$
\left[\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{z}{z-1}\right)\right]_{s}=-13.774
$$

$$
k=\frac{1}{13.774}=0.0726
$$

and

$$
K(z)=0.0726\left(\frac{z}{z-1}\right)
$$

Checking in VisSim

4) PI Compensator: Designa digital compensator

$$
K(z)=k\left(\frac{z-a}{z-1}\right)
$$

which results in 20% overshoot for a step input. For this value of $K(z)$, give

- The resulting closed-loop dominant pole(s)
- The step response of the closed-loop system, and

Let 'a' cancel the slowest stable pole

$$
K(z)=k\left(\frac{z-0.9585}{z-1}\right)
$$

The root locus of $\mathrm{G}(\mathrm{z}) \mathrm{K}(\mathrm{z})$ is then

$$
\left(\frac{0.000933 z^{2}}{(z-0.9585)(z-0.8040)(z-0.5747)(z-0.3606)}\right)\left(\frac{z}{z-1}\right)
$$

or... solve numerically

$$
\operatorname{ang}\left[\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{z-0.9585}{z-1}\right)\right]_{s=-a+j 2 a}=180^{0}
$$

resulting in

$$
\begin{aligned}
& s=-0.6191+j 1.2381 \\
& z=0.9328+j 0.1161
\end{aligned}
$$

At this point

$$
G K=-0.1643
$$

SO

$$
k=\frac{1}{0.1643}=6.0881
$$

and

$$
K(z)=6.0881\left(\frac{z-0.9585}{z-1}\right)
$$

