ECE 461/661 - Homework Set \#12

Root Locus in the z-plane - Due Wednesday, December 7th

1) Determine the corresponding values (revised)

Dominant Pole	Damping Ratio	Resonance Mm	Phase Margin	0dB Gain Freq
$-2+\mathrm{j} 9$	$\mathbf{0 . 2 1 6 9}$	$\mathbf{2 . 3 6 1 1}$	$\mathbf{2 4 . 4 5} \mathbf{~ d e g}$	$\mathbf{9} \mathbf{~ r a d} / \mathbf{s e c}$
$-\mathbf{3 . 1 4}+\mathbf{j 1 0}$	0.3	$\mathbf{1 . 7 4}$	$\mathbf{3 3 . 4} \mathbf{~ d e g}$	$10 \mathrm{rad} / \mathrm{sec}$
$-\mathbf{3 . 5 5 + \mathbf { j 1 0 }}$	$\mathbf{0 . 3 3 4 8}$	+4 dB (1.5849)	$\mathbf{3 6 . 7 8} \mathbf{~ d e g}$	$10 \mathrm{rad} / \mathrm{sec}$
$\mathbf{- 4 . 1 8 + \mathbf { j 1 5 }}$	$\mathbf{0 . 2 6 8 7}$	$\mathbf{1 . 9 3 1 9}$	30 degrees	$15 \mathrm{rad} / \mathrm{sec}$

The 0dB gain frequency is the complex part of the dominant pole

$$
\begin{aligned}
& M_{m}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} \\
& M_{m}=\left|\frac{1 \angle \phi}{1+1 \angle \phi}\right| \\
& \frac{1}{M_{m}^{2}}=2+2 \cos \phi \\
& \text { Phase Margin }=180^{0}-|\phi|
\end{aligned}
$$

2) Determine the system that has the following gain vs. frequency

Start increasing $+40 \mathrm{~dB} /$ decade
two zeros at $\mathrm{s}=0$
The gain drops 40bD / decade at $8 \mathrm{rad} / \mathrm{sec}$
two poles at $8 \mathrm{rad} / \mathrm{sec}$
The gain at the corner is +6 dB (2)
$\frac{1}{2 \zeta}=2$
$\zeta=0.25, \quad \theta=75.5^{0}$
The gain drops another 40dB/decade at $180 \mathrm{rad} / \mathrm{sec}$
Two more poles at $180 \mathrm{rad} / \mathrm{sec}$
The gain at the corder is +0 dB (1)
$\frac{1}{2 \zeta}=1$

$$
\zeta=0.5, \quad \theta=60^{\circ}
$$

The gain at $20 \mathrm{rad} / \mathrm{sec}$ is -6 dB

$$
G(s) \approx\left(\frac{16,200 \cdot s^{2}}{\left(s+8 \angle 75.5^{0}\right)\left(s+8 \angle-75.5^{0}\right)\left(s+180 \angle 60^{0}\right)\left(s+180 \angle-60^{0}\right)}\right)
$$

A 4th-order model for the 10-stage RC filter from homework \#6 is

$$
G(s) \approx\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right)
$$

3) Gain Compensation: Design a gain compensator so that the closed-loop system has

- A phase margin of 40 degrees.

The phase margin means that at some frequency

$$
G K=1 \angle-140^{0}
$$

Search along the line $\mathrm{s}=\mathrm{jw}$ until the angles add up to -40 degrees.

$$
\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right)_{s=j 1.6878}=0.0766 \angle-140^{0}
$$

Pick ' k ' to make the gain one at this frequency

$$
k=\frac{1}{0.0766}=13.058
$$

Sidelight: At this point, you're done. To see what's going on, plot Gk on a Nichols chart. The m -circle is

$$
M_{m}=\left|\frac{1 \angle-140^{0}}{1+1 \angle-140^{0}}\right|=1.4698
$$

By designing for a phase margin, you almost got a resonance of $\mathrm{Mm}=1.4698$ (GK is almost tangent to the M-circle). The gain is a little too large - you intersect the M-circle rather than being tangent to it.
4) (take 1) Design a PI compensator so that the closed-loop system has

- No error for a step input, and
- A phase margin of 40 degrees.
- A OdB gain frequency of $3 \mathrm{rad} / \mathrm{sec}$

Fora PI

- Add a pole at s = 0 (making the system type-1)
- Add a zero at -0.4234 to cancel the slowest stable pole

$$
K(s)=k\left(\frac{s+0.4234}{s}\right)
$$

So now,

$$
G K \approx\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181) s}\right)
$$

For a 40 degree phase margin, at some frequency

$$
\begin{aligned}
& G K(j \omega)=1 \angle-140^{0} \\
& \left(\frac{22}{(s+10.2)(s+5.539)(s+2.181) s}\right)_{s=j 1.2636}=0.118 \angle-140^{0} \\
& k=\frac{1}{0.118}=8.4539 \\
& K(s)=8.4539\left(\frac{s+0.4234}{s}\right)
\end{aligned}
$$

At this point, you're done. Just for fun, plot GK on a Nichols chart

By designing for a phase margin, you almost got a resonance of $\mathrm{Mm}=1.4698$ (GK is almost tangent to the M-circle). The gain is a little too large - you intersect the M-circle rather than being tangent to it.
4) (take 2) Design a PI compensator so that the closed-loop system has

- No error for a step input, and
- A phase margin of 40 degrees.
- A 0 dB gain frequency of $3 \mathrm{rad} / \mathrm{sec}$

$$
G(s) \approx\left(\frac{22}{(s+10.2)(s+5.539)(s+2.181)(s+0.4234)}\right)
$$

Add a pole at $\mathrm{s}=0$. Cancel two poles with two zeros

$$
K(s)=\left(\frac{(s+0.4234)(s+2.181)}{s(s+a)}\right)
$$

Pick 'a' so that

$$
G K(j 3)=1 \angle-140^{0}
$$

Taking the terms you know:

$$
G K(j 3)=\left(\frac{22}{(s+10.2)(s+5.539)(s)}\right)_{s=j 3}=0.1095 \angle-134.8^{0}
$$

For the angle to add up to -140 degrees

$$
\begin{aligned}
& \angle(s+a)=-5.1699^{0} \\
& a=\frac{3}{\tan \left(5.1699^{\circ}\right)}=33.1577
\end{aligned}
$$

and

$$
K(s)=\left(\frac{(s+0.4234)(s+2.181)}{s(s+33.1577)}\right)
$$

Evaluating GK(j3)

$$
G K(j 3)=\left(\frac{22}{s(s+5.539)(s+10.2)(s+33.1577)}\right)_{s=j 3}=0.0033 \angle-140^{0}
$$

The angle is right (good) but the gain is off.

$$
k=\frac{1}{0.0033}=304.06
$$

so

$$
K(s)=304.06\left(\frac{(s+0.4234)(s+2.181)}{s(s+33.1577)}\right)
$$

Sidelight: Plot this again on a Nichols chart shows that you are almost tangent to the M-circle (as desired). The resonance is slightly more than it should be since you intersect the M-circle at 0dB / -140 degrees

Nichols Chart

