Homework \#6: ECE 461

Mass Spring Systems, Rotational Systems, Error Constants. Due Monday, October 9th Mass Spring Systems

1) For the following mass-spring system

1a) Draw the circuit equivalent
1b) Place this system in state-space form
1c) Find the transfer function from F to X 1
1d) Find the step response from F to X1

Problem 1: $\mathrm{M}=2 \mathrm{~kg}, \mathrm{~K}=5 \mathrm{~N} / \mathrm{m}, \mathrm{B}=0.1 \mathrm{Ns} / \mathrm{m}$
2) For the following mass-spring system

2a) Draw the circuit equivalent
2b) Place this system in state-space form
2c) Find the transfer function from F to X3
2d) Find the step response from F to X3

Problem 2: $\mathrm{M}=2 \mathrm{~kg}, \mathrm{~K}=5 \mathrm{~N} / \mathrm{m}, \mathrm{B}=0.1 \mathrm{Ns} / \mathrm{m}$

Rotational Systems

3) For the following rotational system

3a) Draw the circuit equivalent
3b) Place this system in state-space form
3c) Find the transfer function from T to Q1
3d) Find the step response from T to Q1

Problem 3: J = 2kg m2, K = $5 \mathrm{~N} / \mathrm{rad}, \mathrm{B}=0.1 \mathrm{Ns} / \mathrm{rad}$

DC Servo Motors

Find the transfer function for the DC servo motors used in the lab. Data on these motors are:

- $\mathrm{Ra}=24$ Ohms \quad (measured with an ohm-meter)
- $\mathrm{La}=12 \mathrm{mH} \quad$ (measured with an inductance meter)

When you apply +10 VDC to the motor with no load

- It spins at $72 \mathrm{rad} / \mathrm{sec}$
- It draws 130 mA

The step response to a 10VDC step input is as follows (data on-line: $10 \mathrm{~ms} / \mathrm{sample}$)

