Solution to Homework \#4: ECE 461

LaPlace Transforms, 1st and 2nd Order Approximations, Block Diagrams. Due Monday, September 25th

LaPlace Transforms

1) A system has the following transfer function

$$
Y=\left(\frac{10(s+3)}{(s+1)(s+4)(s+10)}\right) X
$$

1a) What is the differential equation which relates X and Y ?
Multiply out the denominator:

$$
\begin{aligned}
& \begin{array}{c}
-->\text { poly } \\
\text { ans }
\end{array}([-1,-4,-10]) \\
& 1 .
\end{aligned}
$$

Cross multiply

$$
\left(s^{3}+15 s^{2}+54 s+40\right) Y=(10 s+30) X
$$

'sY' means 'the derivative of Y

$$
y^{\prime \prime \prime}+15 y^{\prime \prime}+54 y^{\prime}+40 y=10 x^{\prime}+30 x
$$

or

$$
\frac{d^{3} y}{d t^{3}}+15 \frac{d^{2} y}{d t^{2}}+54 \frac{d y}{d t}+40 y=10 \frac{d x}{d t}+30 x
$$

1b) Determine $y(t)$ assuming

$$
x(t)=2+3 \cos (4 t)
$$

This is a steady-state solution - use phasor analysis.

Use superposition:

$$
\begin{array}{ll}
\mathrm{x}(\mathrm{t})=2 & \mathrm{x}(\mathrm{t})=3 \cos (4 \mathrm{t}) \\
\mathrm{s}=0 & \mathrm{~s}=\mathrm{j} 4 \\
\left(\frac{10(s+3)}{(s+1)(s+4)(s+10)}\right)_{s=0}=0.75 & \left(\frac{10(s+3)}{(s+1)(s+4)(s+10)}\right)_{s=j 4}=0.199 \angle-89^{0} \\
y=(0.75)(2) & y=\left(0.199 \angle-89^{0}\right) \cdot 3 \cos (4 t) \\
y=1.5 & y(t)=0.597 \cos \left(4 t-89^{0}\right)
\end{array}
$$

Add up the two inputs to get the total input. Add up the two outputs to get the total output

$$
y(t)=1.5+0.597 \cos \left(4 t-89^{0}\right)
$$

1c) Determine $y(t)$ assuming

$$
x(t)= \begin{cases}0 & t<0 \\ 2 & t>0\end{cases}
$$

This is transient analysis: use LaPlace transforms.
The LaPlace transform of $x(t)$ is

$$
X(s)=\frac{2}{s}
$$

$\mathrm{Y}(\mathrm{s})$ is then

$$
Y=\left(\frac{10(s+3)}{(s+1)(s+4)(s+10)}\right)\left(\frac{2}{s}\right)
$$

To find $y(t)$, use partial fractions

$$
Y=\left(\frac{1.5}{s}\right)+\left(\frac{-1.481}{s+1}\right)+\left(\frac{-0.278}{s+4}\right)+\left(\frac{0.2593}{s+10}\right)
$$

Now take the inverse LaPlace transform

$$
y(t)=1.5-1.481 e^{-t}-0.278 e^{-4 t}+0.2593 e^{-10 t} \quad t>0
$$

2a) Determine a 2nd-order system which has approximately the same step response as this system

$$
Y=\left(\frac{100,000}{(s+2)(s+8)(s+20)(s+50)}\right) X
$$

Keep the two slowest (most dominant poles).

$$
Y \approx\left(\frac{?}{(s+2)(s+8)}\right) X
$$

Match the DC gain

$$
\begin{aligned}
& \left(\frac{100,000}{(s+2)(s+8)(s+20)(s+50)}\right)_{s=0}=6.25 \\
& \left(\frac{?}{(s+2)(s+8)}\right)_{s=0}=6.25
\end{aligned}
$$

This gives

$$
Y \approx\left(\frac{100}{(s+2)(s+8)}\right) X
$$

2b) Compare the step response of the two systems in Matlab (or similar program)

```
-->t = [0:0.01:5]';
-->G4 = zpk([],[-2,-8,-20,-50],100000);
-->G2 = zpk([],[-2,-8],100);
-->y4 = step(G4,t);
-->y2 = step(G2,t);
-->plot(t,y4,t,y2)
-->xlabel('seconds');
```


Step response of the 4th-order system (blue) and 2nd-order approximation (red)
The two systems have the same DC gain, the same 2% settling time, the same overshoot, and the same frequency of oscillation.

3a) Determine a 2nd-order system which has approximately the same step response as this system

$$
Y=\left(\frac{100,000}{\left(s^{2}+2 s+16\right)(s+20)(s+50)}\right) X
$$

Keep the two slowest (dominant) poles

$$
Y \approx\left(\frac{?}{s^{2}+2 s+16}\right) X
$$

Match the DC gain

$$
\begin{aligned}
& \left(\frac{100,000}{(s+2)(s+8)(s+20)(s+50)}\right)_{s=0}=6.25 \\
& \left(\frac{?}{s^{2}+2 s+16}\right)_{s=0}=6.25
\end{aligned}
$$

This gives

$$
Y \approx\left(\frac{100}{s^{2}+2 s+16}\right) X
$$

3b) Compare the step response of the two systems in Matlab (or similar program)

```
-->G4 = zpk([],[-1-j*3.873,-1+j*3.873,-20,-50],100000);
-->G2 = tf(100,[1,2,16])
-->y2 = step(G2,t);
-->y4 = step(G4,t);
-->plot(t,y4,t,y2)
```


Step Response of the 4th-order system (blue) and 2nd-order system (red).
The two systems have the same DC gain, the same 2% settling time, the same overshoot, and the same frequency of oscillation.
4) Find the transfer function for a system with the following step response:

This is a 1st-order system, so

$$
G(s) \approx \frac{a}{s+b}
$$

The DC gain is 5.00

$$
\frac{a}{b}=5
$$

The 2% settling time is 12 seconds (approx)

$$
b=\frac{4}{12}=0.333
$$

so

$$
G(s) \approx\left(\frac{1.666}{s+0.333}\right)
$$

5) Find the transfer function for a system with the following step response:

This is a 2nd-order sytem, so

$$
G(s) \approx\left(\frac{a}{\left(s+\sigma+j \omega_{d}\right)\left(s+\sigma-j \omega_{d}\right)}\right)
$$

The DC gain is 2.2
The 2% settling time is 9 seconds (approx)

$$
\sigma=\frac{4}{9}=0.444
$$

The frequency of oscillation is

$$
\begin{aligned}
& \omega_{d}=\left(\frac{3 \text { cycles }}{6.2 \text { sec }}\right) \cdot 2 \pi \\
& \omega_{d}=3.04
\end{aligned}
$$

So

$$
G(s) \approx\left(\frac{a}{(s+0.44+j 3.04)(s+0.44-j 3.04)}\right)
$$

Pick the numerator so that the DC gain is 2.2

$$
G(s) \approx\left(\frac{20.75}{(s+0.44+j 3.04)(s+0.44-j 3.04)}\right)
$$

Block Diagrams

6) Find the transfer function from X to Y

Shortcut

$$
Y=\left(\frac{A B C D}{1+C E+B C D F}\right) X
$$

Long way: Combine C and E

$$
\left(\frac{C}{1+C E}\right)
$$

Combine the outer loop

$$
\left(\frac{B\left(\frac{C}{1+C E}\right) D}{1+B\left(\frac{C}{1+C E}\right) D F}\right)
$$

Add in A

$$
Y=A\left(\frac{B\left(\frac{C}{1+C E}\right)^{D}}{1+B\left(\frac{C}{1+C E}\right) D F}\right) X
$$

Simplify

$$
Y=\left(\frac{A B C D}{(1+C E)+B C D F}\right) X
$$

which is the same as the shortcut
7) Find the transfer funciton from X to Y

Shortcut

$$
Y=\left(\frac{A B C+A E C}{1+B C D+A B C+A E C}\right) X
$$

Long Way

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{Cp} \\
& \mathrm{p}=\mathrm{Bn}+\mathrm{EAm} \\
& \mathrm{n}=-\mathrm{DY}+\mathrm{Am} \\
& \mathrm{~m}=\mathrm{X}-\mathrm{Y}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& n=-D Y+A(X-Y) \\
& p=B(-D Y+A(X-Y))+E A(X-Y) \\
& Y=C p=C\{B(-D Y+A(X-Y))+E A(X-Y)\}
\end{aligned}
$$

group terms

$$
\begin{aligned}
& Y=(-C B D-C B A-E A) Y+(C B A+E A) X \\
& (1+C B D+C B A+C E A) Y=(C B A+C E A) X \\
& Y=\left(\frac{A B C+A E C}{1+B C D+A B C+A E C}\right) X
\end{aligned}
$$

