Homework \#9: ECE 461

Gain, Lead, PID Compensation. Due Monday, October 30th

Problem 1: Assume

$$
G(s)=\left(\frac{0.2796}{(s+0.195)(s+1.074)(s+2.753)}\right)
$$

a) Design a compensator, $\mathrm{K}(\mathrm{s})$, which results in

- No error for a step input
- A 2% settling time of 4 seconds, and
- 20% overshoot for a step input.

Pick K(s) as

$$
K(s)=k\left(\frac{(s+0.195)(s+1.074)}{s(s+a)}\right)
$$

This

- Adds a pole at $\mathrm{s}=0$ making the system type-1
- Cancels the two slow poles
- Adds a second pole so that $\mathrm{s}=-1+\mathrm{j} 2$ is on the root locus

To find 'a'

$$
G K=\left(\frac{0.2796}{s(s+2.753)(s+a)}\right)
$$

At $\mathrm{s}=-1+\mathrm{j} 2$

$$
\left(\frac{0.2796}{s(s+2.753)(s+a)}\right)_{s=-1+j 2}=1 \angle 180^{0}
$$

Note that

$$
\left(\frac{0.2796}{s(s+2.753)}\right)_{s=-1+j 2}=0.0470 \angle-165.33^{0}
$$

To make the angles add up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=14.67^{0} \\
& a=\frac{2}{\operatorname{ran}\left(14.67^{0}\right)}+1=8.64
\end{aligned}
$$

This gives the following root locus (in case you're interested). Note that $\mathrm{s}=-1+\mathrm{j} 2$ is on the root locus.

To find k

$$
G K=\left(\frac{0.2796}{s(s+2.753)(s+8.64)}\right)_{s=-1+j 2}=0.0060 \angle 180^{0}
$$

so

$$
k=\frac{1}{0.0060}=167.97
$$

and

$$
K(s)=167.97\left(\frac{(s+0.195)(s+1.074)}{s(s+8.64)}\right)
$$

b) Find the step response of the closed-loop system using Matlab or VisSim (or similar program) Matlab Code:

```
>> G = zpk([],[-0.195,-1.064,-2.753],0.2796)
    0.2796
(s+0.195) (s+1.064) (s+2.753)
>> K = zpk([-0.195,-1.074],[0,-8.64],167.97)
167.97 (s+0.195) (s+1.074)
    s (s+8.64)
>> Gcl = minreal(G*K / (1+G*K))
>> eig(Gcl)
ans =
    -1.0781
    -0.9933 + 1.9987i
    -0.9933 - 1.9987i
    -9.3922
>> t = [0:0.001:5]';
y y = step(Gcl,t);
>> plot(t,y);
>> grid on
```


c) Give a circuit to implement $\mathrm{K}(\mathrm{s})$.

$$
K(s)=167.97\left(\frac{(s+0.195)(s+1.074)}{s(s+8.64)}\right)
$$

Reqrite this as

$$
K(s)=10\left(\frac{(s+0.195)}{s}\right) \cdot 16.797\left(\frac{(s+1.074)}{(s+8.64)}\right)
$$

Problem 2: A better model includes a delay to approximate the neglected poles. Assume

$$
G(s)=\left(\frac{0.2796}{(s+0.195)(s+1.074)(s+2.753)}\right) \cdot e^{-0.65 s}
$$

a) Design a compensator, $\mathrm{K}(\mathrm{s})$, which results in

- No error for a step input
- A 2% settling time of 10 seconds, and (change from 4 seconds)
- 20% overshoot for a step input.

Let

$$
K(s)=k\left(\frac{(s+0.195)(s+1.074)}{s(s+a)}\right)
$$

For $=0.4+\mathrm{j} 0.8$ to be on the root locus

$$
G K=\left(\left(\frac{0.2796}{s(s+a)(s+2.753)}\right) \cdot e^{-0.65 s}\right)_{s=-0.4+j 0.8}=1 \angle 180^{0}
$$

Taking the part that we know

$$
G K=\left(\left(\frac{0.2796}{s(s+2.753)}\right) \cdot e^{-0.65 s}\right)_{s=-0.4+j 0.8}=0.1631 \angle-165.14^{0}
$$

meaning

$$
\begin{aligned}
& \angle(s+a)=14.86^{0} \\
& a=\frac{0.8}{\tan \left(14.86^{0}\right)}+0.4=3.4143
\end{aligned}
$$

To find k

$$
\begin{aligned}
& G K=\left(\left(\frac{0.2796}{s(s+3.4143)(s+2.753)}\right) \cdot e^{-0.65 s}\right)_{s=-0.4+j 0.8}=0.0523 \angle 180^{0} \\
& k=\frac{1}{0.0523}=19.1176
\end{aligned}
$$

and

$$
K(s)=19.1176\left(\frac{(s+0.195)(s+1.074)}{s(s+3.4143)}\right)
$$

In Matlab
Input the system G = zpk([],[-0.195,-1.074,-2.753],0.2796);

Input the delay of 0.65 seconds. Use a 2 nd-order Pade approximation
[num,den] = pade(0.65, 2);
D = tf(num, den);
Input the compensator

```
K = zpk([-0.195,-1.074],[0,-3.4143],1);
```

Draw the root locus just because they're fund to look at

```
k = logspace(-2,2,1000)';
rlocus(G*D*K, k);
```


Note that $\mathrm{s}=-0.4+\mathrm{j} 0.8$ is on the root locus

To find the gain at this point

```
-->evalfr(GKD, -0.4 + j*0.8)
    ans =
    - 0.0527228 + 0.0000851i
-->1/abs(ans)
    ans =
        18.9671
```

It's a little off due to using a 2nd-order Pade approximation for a delay. If you use a 4th-order or 6th-order, you get closer to the previous number of 19.1176
b) Find the step response of the closed-loop system using Matlab or VisSim (or similar program) In Matlab

```
>> G = zpk([],[-0.195,-1.064,-2.753],0.2796);
>> [num,den] = pade(0.65,2);
>> D = tf(num,den);
>> K = zpk([-0.195,-1.074],[0,-3.4143],19.1176)
19.1176 (s+0.195) (s+1.074)
    s (s+3.414)
>> Gcl = minreal( G*D*K / (1 + G*D*K) );
>> eig(Gcl)
    -0.3936 + 0.8005i
    -1.0804
    -0.3936 - 0.8005i
    -4.1211 + 3.5877i
    -6.3523
    -4.1211 - 3.5877i
>> t = [0:0.001:15]';
>> y = step(Gcl,t);
>> plot(t,y);
>> grid on
```


c) Give a circuit to implement $\mathrm{K}(\mathrm{s})$.

$$
K(s)=19.1176\left(\frac{(s+0.195)(s+1.074)}{s(s+3.4143)}\right)=4\left(\frac{(s+1.074)}{(s+3.4143)}\right) \cdot 4.7794\left(\frac{(s+0.195)}{s}\right)
$$

Problem 3: A gantry system has the following dynamics:

$$
\theta=\left(\frac{0.5}{s^{2}+14.7}\right) X
$$

a) Design a compensator, $\mathrm{K}(\mathrm{s})$, which results in

- No error for a step input, and
- A 2% settling time less than 20 seconds

Step 1: Stabilize the system

$$
\begin{aligned}
& K_{1}(s)=k\left(\frac{s+0.5}{s+5}\right) \\
& \gg G=\operatorname{tf}(0.5,[1,0,14.7]) \\
& 0.5 \\
&------- \\
& \mathrm{s} \wedge 2+14.7 \\
& \gg \text { K1 }=\operatorname{zpk}(-0.5,-5,1) ; \\
& \ggk=\operatorname{logspace}(-2,2,1000))^{\prime} ; \\
& \gg \text { rlocus(G*K1,k); }
\end{aligned}
$$

Pick a spot that's stable and placed the closed-loop poles there

$$
\begin{aligned}
& \gg s=-1+\mathrm{j}^{*} 5.16 ; \\
& \gg \text { evalfr }(\mathrm{G} * \mathrm{~K}, \mathrm{~s}) \\
& \\
& -0.0264+0.0000 \mathrm{i} \\
& \gg \\
& 1 / \mathrm{abs}(\text { ans }) \\
& \\
& 37.8544 \\
& \\
& K_{1}(s)=37.85\left(\frac{s+0.5}{s+5}\right)
\end{aligned}
$$

```
>> K1 = zpk(-0.5,-5,37.8544);
>> G2 = minreal(G*K1 / (1+G*K1));
>> zpk(G2)
    18.9272 (s+0.5)
-----------------------------
(s+3.003) (s^2 + 1.997s + 27.63)
```

Step 2: Now that the system's stable, add another feedback loop to stabilize

$$
G_{2}=\left(\frac{18.9272(s+0.5)}{(s+3.003)\left(s^{2}+1.997 s+27.63\right)}\right)
$$

Let

$$
K_{2}=k\left(\frac{\left(s^{2}+1.997 s+27.63\right)(s+3.003)}{s(s+0.5)(s+a)}\right)
$$

Then

$$
G_{2} K_{2}=\left(\frac{18.7292 k}{s(s+a)}\right)
$$

For $s=-1+j 2$ to be on the root locus

$$
\begin{aligned}
& \mathrm{a}=2 \\
& G_{2} K_{2}=\left(\frac{18.7292 k}{s(s+2)}\right)_{s=-1+j 2}=3.745 k \angle 180^{0} \\
& k=\frac{1}{3.745}=0.2670 \\
& K_{2}=0.2670\left(\frac{\left(s^{2}+1.997 s+27.63\right)(s+3.003)}{s(s+0.5)(s+2)}\right)
\end{aligned}
$$

b) Find the step response of the closed-loop system using Matlab or VisSim (or similar program) In Matlab, contining

```
> K2 = zpk([-0.9987+j*5.1607,-0.9987-j*5.1607,-3.0027],[0,-0.5,-2],0.2670)
0.267 (s+3.003) (s^2 + 1.997s + 27.63)
    s (s+0.5) (s+2)
>> G3 = minreal(G2*K2 / (1+G2*K2));
>> eig(G3)
    -0.9987 + 5.1607i
    -0.9987 + 5.1607i
    -1.0000 + 2.0134i
    -3.0027
    -3.0027
    -0.9987 - 5.1607i
    -0.9987 - 5.1607i
    -1.0000 - 2.0134i
>> t = [0:0.001:5]';
>> y = step(G3,t);
>> plot(t,y);
>> grid on
```


or in VisSim

Problem 4: The dynamics of an inverted pendulum where the input is the position of the base (X) is

$$
\theta=\left(\frac{-1}{(s+3.13)(s-3.13)}\right) X
$$

a) Design a compensator, $K(s)$, which results in

- A stable closed-loop system, with
- 20% overshoot for a step input, and
- A 2% settling time less of 4 seconds

Step 1: Stablize the system. Let

$$
K_{1}=k\left(\frac{s+3.13}{s+10}\right)
$$

This gives the following root locus:

Pick a point that's stable. Arbitrarily, let s=-1

$$
G K_{1}=\left(\frac{-1}{(s+10)(s-3.13)}\right)_{s=-1}=0.0269 \angle 0^{0}
$$

There's a sign error. Let

$$
\begin{aligned}
& K_{1}=-k\left(\frac{s+3.13}{s+10}\right) \\
& G K_{1}=\left(\frac{1}{(s+10)(s-3.13)}\right)_{s=-1}=0.0269 \angle 180^{0} \\
& k=\frac{1}{0.0269}=37.17
\end{aligned}
$$

and

$$
K_{1}=-37.17\left(\frac{s+3.13}{s+10}\right)
$$

The closed-loop system is then

```
>> G = zpk([],[3.13,-3.13],-1)
    -1
(s-3.13) (s+3.13)
>> K1 = zpk(-3.13,-10,-37.17)
-37.17 (s+3.13)
--------------
    (s+10)
>> G2 = minreal(G*K1 / (1+G*K1));
>> zpk(G2)
    37.17
------
(s+5.87) (s+1)
```

Step 2: Now meet the design specs. Let

$$
K_{2}(s)=k\left(\frac{(s+1)(s+5.87)}{s(s+2)}\right)
$$

so that

$$
G_{2} K_{2}=\left(\frac{37.17}{s(s+2)}\right)_{s=-1+j 2}=7.434 \angle 180^{0}
$$

$$
k=\frac{1}{7.434}=0.1345
$$

$$
K_{2}(s)=0.1345\left(\frac{(s+1)(s+5.87)}{s(s+2)}\right)
$$

b) Find the step response of the closed-loop system using Matlab or VisSim (or similar program)

```
>> K2 = zpk([-1,-5.87],[0,-2],0.1345);
>> G3 = minreal(G2*K2 / (1 + G2*K2));
>> zpk(G3)
    4.9994
-----
(s^2 + 2s + 4.999)
>> t = [0:0.001:5]';
>> y = step(G3,t);
>> plot(t,y);
```


or in VisSim

