Homework \#10: ECE 461

z-Transform. Converting G(s) to G(z). Due Monday, November 13th

1) X and Y are related as follows:

$$
Y=\left(\frac{400}{(s+10)(s+20)}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\begin{aligned}
& ((s+10)(s+20)) Y=(400) X \\
& \left(s^{2}+30 s+200\right) Y=400 X
\end{aligned}
$$

$s Y$ means the derivative of $y(t)$

$$
\frac{d^{2} y}{d t^{2}}+30 \frac{d y}{d t}+200 y=400 x
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=2+3 \sin (4 t)
$$

Use superposition:

$$
\begin{aligned}
& x(t)=2 \\
& s=0 \\
& \left(\frac{400}{(s+10)(s+20)}\right)_{s=0}=2 \\
& y=(2) \cdot 2 \\
& y=4
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=3 \sin (4 t) \\
& s=j 4 \\
& \left(\frac{400}{(s+10)(s+20)}\right)_{s=j 4}=1.8209 \angle-33.1^{0} \\
& y=\left(1.8209 \angle-33.1^{0}\right) \cdot 3 \sin (4 t) \\
& y=5.4627 \sin \left(4 t-33.1^{0}\right)
\end{aligned}
$$

Putting it all together:

$$
y=4+5.4627 \sin \left(4 t-33.1^{0}\right)
$$

2) X and Y are related as follows:

$$
Y=\left(\frac{0.1 z}{(z-0.9)(z-0.8)}\right) X
$$

a) What is the difference equation relating X and Y ?

Cross multiply

$$
\begin{aligned}
& ((z-0.9)(z-0.8)) Y=(0.1 z) X \\
& \left(z^{2}-1.7 z+0.72\right) Y=(0.1 z) X
\end{aligned}
$$

$z X$ means the next value of X

$$
\mathrm{y}(\mathrm{k}+2)-1.7 \mathrm{y}(\mathrm{k}+1)+0.72 \mathrm{y}(\mathrm{k})=0.1 \mathrm{x}(\mathrm{k}+1)
$$

b) Determine $y(t)$ assuming

$$
\begin{aligned}
& x(t)=2+3 \sin (4 t) \\
& T=0.1
\end{aligned}
$$

$$
\begin{aligned}
& x(\mathrm{t})=2 \\
& \mathrm{~s}=0 \\
& z=e^{s T}=1 \\
& \left(\frac{0.1 z}{(z-0.9)(z-0.8)}\right)_{z=1}=5 \\
& y=(5) \cdot 2 \\
& y=10
\end{aligned}
$$

$$
\begin{aligned}
& x(\mathrm{t})=3 \sin (4 \mathrm{t}) \\
& \mathrm{s}=\mathrm{j} 4 \\
& z=e^{s T}=1 \angle 22.9^{0} \\
& \left(\frac{0.1 z}{(z-0.9)(z-0.8)}\right)_{z=1 \angle 22.9^{0}}=0.6288 \angle-136^{0} \\
& y=\left(0.6288 \angle-136^{0}\right) \cdot 3 \sin (4 t) \\
& y=1.8863 \sin \left(4 t-136^{0}\right)
\end{aligned}
$$

Putting it all together:

$$
y=10+1.8863 \sin \left(4 t-136^{\circ}\right)
$$

3) Assume

$$
G(s)=\left(\frac{4}{(s+1)(s+3)}\right)
$$

a) Determine a filter, $G(z)$, which has approximately the same step respone as $G(s)$. Assume $T=0.1 \mathrm{sec}$ s and z are related by

\[

\]

so

$$
G(z)=\left(\frac{k}{(z-0.9048)(z-0.7408)}\right)
$$

Pick 'k' to match the DC gain

$$
\begin{aligned}
& \left(\frac{4}{(s+1)(s+3)}\right)_{s=0}=1.333 \\
& \left(\frac{k}{(z-0.9048)(z-0.7408)}\right)_{z=1}=1.333
\end{aligned}
$$

$$
k=0.0329
$$

so

$$
G(z)=\left(\frac{0.0329 z}{(z-0.9048)(z-0.7408)}\right)
$$

(optional): Add zeros to match the delay. One zero works pretty well.
b) Plot the step response of $G(s)$ and $G(z)$

In Matlab:
>> \% The poles in the s-plane
$\gg \mathrm{ps}=[-1,-3]$
$-1 \quad-3$
>> \% The poles in teh z-plane
>> pz $=\exp \left(p s^{*} T\right)$

$$
0.9048 \quad 0.7408
$$

>> Gs $=\operatorname{zpk}([],[-1,-3], 4)$
4
$(s+1)(s+3)$
>> T = 0.1;
>> Gz $=$ zpk([0],pz, 0.0329,T)
0.0329 z
$(z-0.9048)(z-0.7408)$
Sampling time (seconds): 0.1

```
>> step(Gz)
>> hold on
>> t = [0:0.001:10]';
>> ys = step(Gs,t);
>> plot(t,ys,'r');
```


4) Assume

$$
G(s)=\left(\frac{4}{(s+1+j 4)(s+1-j 4)}\right)
$$

a) Determine a filter, $G(z)$, which has approximately the same step respone as $G(s)$. Assume $T=0.1 \mathrm{sec}$
$\mathrm{s}=-1+\mathrm{j} 4: \quad \mathrm{z}=e^{\mathrm{sT}}=0.8334+j 0.3524$
so

$$
G(z)=\left(\frac{k}{(z-0.8334+j 0.3524)(z-0.8334-j 0.3524)}\right)
$$

Matching the DC gain:

$$
\begin{aligned}
& \left(\frac{4}{(s+1+j 4)(s+1-j 4)}\right)_{s=0}=0.2353 \\
& \left(\frac{k}{(z-0.8334+j 0.3524)(z-0.8334-j 0.3524)}\right)_{z=1}=0.2353 \\
& k=0.0357
\end{aligned}
$$

so

$$
G(z)=\left(\frac{0.0357 z}{(z-0.8334+j 0.3524)(z-0.8334-j 0.3524)}\right)
$$

(optional): Add a zero at $\mathrm{z}=0$ to match the delay. One zero works fairly well.
b) Plot the step response of $G(s)$ and $G(z)$

In Matlab:

```
>> % The poles in the s-plane
>> ps = [-1+j*4,-1-j*4]
    -1.0000 + 4.0000i -1.0000 - 4.0000i
>> % The poles in the z-plane
>> pz = exp(ps*T)
    0.8334 + 0.3524i 0.8334 - 0.3524i
>> Gs = zpk([],ps,4)
    4
(s^2 + 2s + 17)
>> Gz = zpk([0],pz,0.0357,T)
    0.0357 z
(z^2 - 1.667z + 0.8187)
>> step(Gz)
>> hold on
>> t = [0:0.001:6]';
>> ys = step(Gs,t);
>> plot(t,ys,'r');
>> step(Gz)
> hold on
>> t = [0:0.001:6]';
>> ys = step(Gs,t);
>> plot(t,ys,'r');
```


5) Assume

$$
G(s)=5\left(\frac{s+0.5}{s+2}\right)
$$

a) Determine a filter, $G(z)$, which has approximately the same step respone as $G(s)$. Assume $T=0.1 \mathrm{sec}$
$\mathrm{s}=-0.5$

$$
z=e^{s T}=0.9512
$$

$s=-2$

$$
Z=e^{s T}=0.8187
$$

so

$$
G(z)=k\left(\frac{z-0.9512}{z-0.8187}\right)
$$

Pick 'k' to match the DC gain

$$
\begin{aligned}
& 5\left(\frac{s+0.5}{s+2}\right)_{s=0}=1.25 \\
& k\left(\frac{z-0.9512}{z-0.8187}\right)_{z=1}=1.25 \\
& k=4.644
\end{aligned}
$$

so

$$
G(z)=4.644\left(\frac{z-0.9512}{z-0.8187}\right)
$$

b) Plot the step response of $\mathrm{G}(\mathrm{s})$ and $\mathrm{G}(\mathrm{z})$

In Matlab:

```
>> Gs = zpk(-0.5,-2,5)
5 (s+0.5)
    (s+2)
>> Gz = zpk(exp(-0.5*T), exp(-2*T),4.644,T)
4.644 (z-0.9512)
----------------
    (z-0.8187)
Sampling time (seconds): 0.1
>> step(Gz)
>> hold on
>> t = [0:0.001:3.5]';
>> ys = step(Gs,t);
>> plot(t,ys,'r');
```


