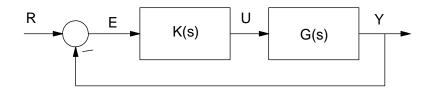

# Homework #12: ECE 461


Part 1: Analog PI Control of a DC Motor - Monday November 20th



A DC Servo motor is set up in room 237 with a PIC controller. The PIC serves as a tachometer:

- It measures the speed of the motor using the optical encoder, and
- Outputs a voltage proportional to the error (x 0.1)
- The push-button (Step input) lets you change the set point from -50 rad/sec to +50 rad/sec

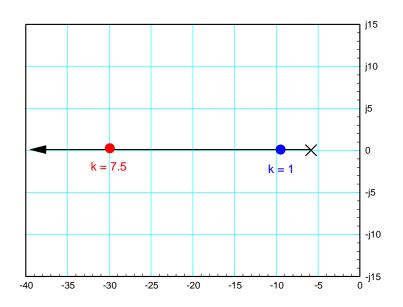
If you lump the x0.1 gain for the tachometer along with the power amplifier and motor, the block diagram for this system is then



$$G(s) = \left(\frac{3.2}{s+6}\right)$$

The speed of the motor is output on the serial port at

- 9600 baud
- No flow control
- 20ms / sample (50 samples / second)


If you capture the resulting data and import it into Matlab, you can plot the resulting step responses:

```
DATA = [ <paste data here ];
t = [1 : length(DATA)]' * 0.02;
plot(t,DATA)
```

# Proportional Feedback: K(s) = k

 $G(s) = \left(\frac{3.2}{s+6}\right)$  $GK = \left(\frac{3.2k}{s+6}\right)$ 

This gives the following root locus:



## k = 1

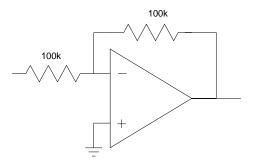
Circuit:

- R1 = 100k
- R2 = 100K

#### Curent Program:

ERROR = REF - SPEED; D2A(0.1\*ERROR);

Software Implementation of P Compensator:


ERROR = REF - SPEED U = ERROR; D2A(0.1\*U);

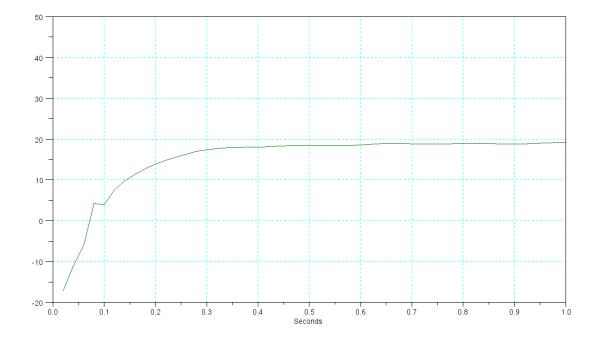
**Open-Loop System** 

$$GK = \left(\frac{3.2}{s+6}\right)$$

Closed-Loop System

$$\left(\frac{GK}{1+GK}\right) = \left(\frac{3.2}{s+9.2}\right)$$




This results in

• DC gain = 0.347 17.3

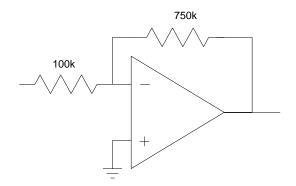
 $17.39 \; rad/sec \; when \; R = 50$ 

- 2% Settling Time = 4/9.2 = 0.434 seconds
- No overshoot

|                    | Expected | Actual |
|--------------------|----------|--------|
| DC Speed (rad/sec) | 17.39    | 18.78  |
| 2% Settling Time   | 434ms    | 400ms  |
| Overshoot          | 0        | 0      |



## k = 7.5:


Circuit Implementation:

• R1 = 750k

• R2 = 100k

Software:

ERROR = REF - SPEED; D2A(0.1\*ERROR);

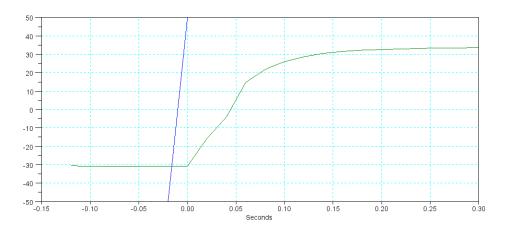


Software Implementation of P Compensator:

ERROR = REF - SPEED U = 7.5\*ERROR; D2A(0.1\*U);

#### Program:

ERROR = REF - SPEED; U = 7.5\*ERROR; D2A(0.1\*U);


Open-Loop System:

$$GK = \left(\frac{3.2}{s+6}\right) \cdot 7.5$$

Closed-Loop System:

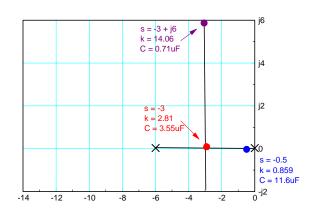
$$\left(\frac{GK}{1+GK}\right) = \left(\frac{24}{s+30}\right)$$

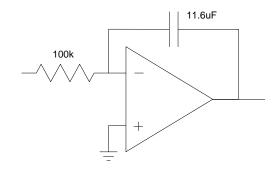
|                    | Expected | Actual |
|--------------------|----------|--------|
| DC Speed (rad/sec) | 40       | 33.7   |
| 2% Settling Time   | 133ms    | 150ms  |
| Overshoot          | 0        | 0      |



## Integral Feedback: K(s) = k/s

a) s = -0.5


$$GK = \left(\frac{3.2k}{s(s+6)}\right)$$
$$k = 0.859$$


Op-Amp Circuit:

- R = 100k
- C = 11.6uF

Software Implementation of I Compensator:

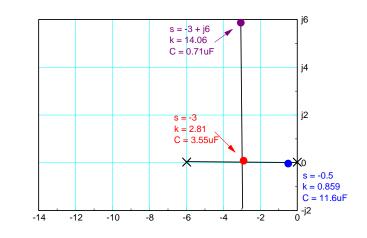
ERROR = REF - SPEED; U = U + 0.859\*ERROR; D2A(0.1\*U);





Results: (10uF)

|                    | Expected | Actual |
|--------------------|----------|--------|
| DC Speed (rad/sec) | 50       | 50     |
| 2% Settling Time   | 8 sec    | 6 sec  |
| Overshoot          | 0%       | 0%     |



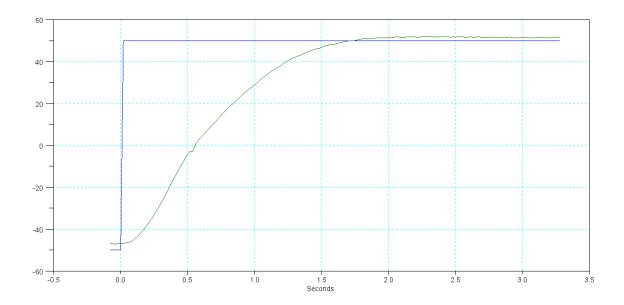

## **Integral Feedback:**

b) s = -3  $GK = \left(\frac{3.2k}{s(s+6)}\right)$ k = 2.81


**Op-Amp Circuit:** 

- R = 100k
- C = 3.55uF




Software Implementation of I Compensator:

ERROR = REF - SPEED; U = U + 2.81\*ERROR; D2A(0.1\*U);



#### Results: (4uF)

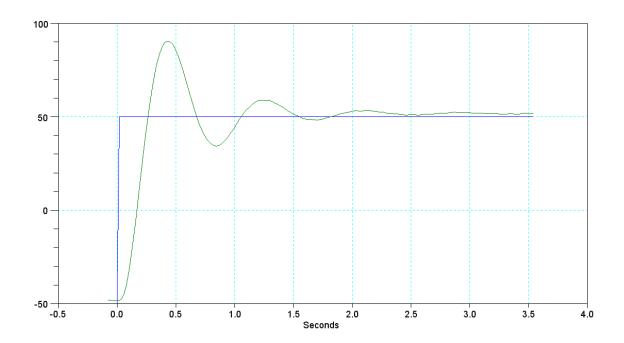
|                    | Expected | Actual  |
|--------------------|----------|---------|
| DC Speed (rad/sec) | 50       | 51.5    |
| 2% Settling Time   | 1.33 sec | 2.0 sec |
| Overshoot          | 0%       | 0%      |

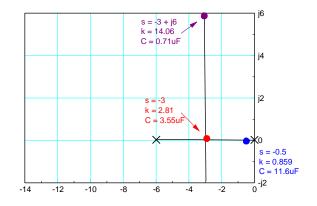


# Integral Feedback: K(s) = k/s

b) 
$$s = -3 + j6$$
  
 $GK = \left(\frac{3.2k}{s(s+6)}\right)$   
 $k = 14.06$ 

**Op-Amp Circuit:** 


- R = 100k
- C = 0.71 uF


Software Implementation of I Compensator:

ERROR = REF - SPEED; U = U + 14.06\*ERROR; D2A(0.1\*U);

Results: (0.68uF)

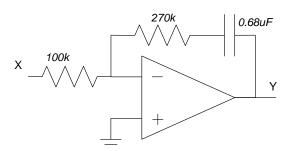
|                    | Expected          | Actual            |
|--------------------|-------------------|-------------------|
| DC Speed (rad/sec) | 50                | 51.5              |
| 2% Settling Time   | 1.33 sec          | 2.0 sec           |
| Overshoot          | 20%<br>20 rad/sec | 40%<br>40 rad/sec |

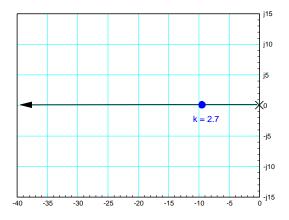




# **Proportional - Integral Feedback:** $K(s) = k(\frac{s+a}{s})$

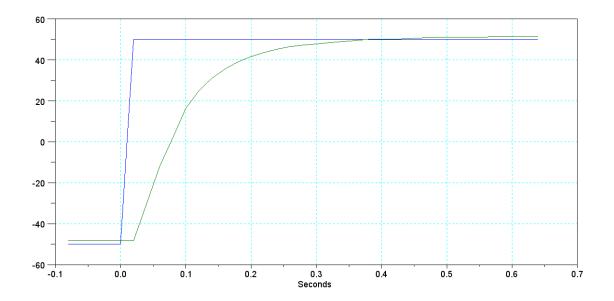
$$K(s) = k \left(\frac{s+6}{s}\right)$$
$$GK = \left(\frac{3.2k}{s}\right)$$


For placing the closed-loop pole at s = =8.64


Circuit:

- R2 = 270k
- C2 = -0.68 uF
- R1 = 100k

Software Implementation of PI Compensator:


E1 = E0; E0 = REF - SPEED; U = U + 2.7\*(E0 - E1);





Results:

|                    | Expected | Actual |
|--------------------|----------|--------|
| DC Speed (rad/sec) | 50       | 51.5   |
| 2% Settling Time   | 462 ms   | 400 ms |
| Overshoot          | 0%       | 0%     |

