ECE 461/661 - Final Exam: Name

Fall 2018

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{20}{(s+2)(s+5)}\right) X
$$

1a) Find $y(t)$ assuming

$$
x(t)=2+3 \cos (4 t)
$$

1b) Find $y(t)$ assuming

$$
x(t)=2 u(t)=\left\{\begin{array}{cc}
2 & t>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

2a) Determine the transfer function for the system with the following step response

2b) Determine the transfer function for the system with the following frequency response

3a) Write four coupled differential equations to describe the dynamics of this circuit

3b) Express these dynamics in state-space form

4) Sketch the root locus for

$$
G(s)=\left(\frac{100}{(s+1)(s+4)(s+5)(s+6)}\right)
$$

Determine the following:

Real Axis Loci	
Breakaway Points (approx)	
jw Crossing (approx)	
Asymptotes	

5) Assume a system has the following dynamics:

$$
G(s)=\left(\frac{100}{(s+2)(s+4)(s+10)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, so that the closed-loop system has

- No error for a step input, and
- Closed-loop dominant poles at $\mathbf{s}=\mathbf{- 3 + \mathbf { j } \mathbf { 2 }}$
(note: this implies $G K(-3+j 2)=1 \angle 180^{\circ}$)

6) Assume a system has the following dynamics:

$$
G(s)=\left(\frac{100}{(s+2)(s+4)(s+10)}\right)
$$

Design a digital compensator, $\mathrm{K}(\mathrm{z})$, so that the closed-loop system has

- No error for a step input,
- Closed-loop dominant poles at $\mathbf{s}=\mathbf{- 3 + \mathbf { j } 2}$, and

Assume a sampling rate of $\mathrm{T}=100 \mathrm{~ms}(\mathrm{~T}=0.1)$
7) Assume a system has the following dynamics:

$$
G(s)=\left(\frac{100}{(s+2)(s+4)(s+10)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, so that the closed-loop system has

- A DC gain of one (no error for a step input),
- A 0 dB gain frequency of $5 \mathrm{rad} / \mathrm{sec}$, and
- A phase margin of 50 degrees
(note: this implies $G K(j 5)=1 \angle-130^{0}$)

8a) Determine a discrete-time equivalent to $\mathrm{K}(\mathrm{s})$. Assume a sampling rate of 100 ms ($\mathrm{T}=0.1$)

$$
K(s)=\left(\frac{20(s+3)(s+5)}{s(s+10)}\right)
$$

8b) Design a circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{20(s+3)(s+5)}{s(s+10)}\right)
$$

Bonus! What are the names of Santa's Reindeer?

2nd-Order Approximations

$$
\begin{gathered}
G(s)=\left(\frac{k \cdot \omega_{o}^{2}}{s^{2}+2 \zeta \omega_{o} s+\omega_{o}^{2}}\right)=\left(\frac{k \cdot\left(\sigma^{2}+\omega_{d}^{2}\right)}{\left(s+\sigma+j \omega_{d}\right)\left(s+\sigma-j \omega_{d}\right)}\right) \\
s=-\sigma \pm j \omega_{d}=\omega_{o} \angle \pm \theta
\end{gathered}
$$

$\% O S=\exp \left(-\left(\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)\right)$ \% Overshoot
$\omega_{m}=\omega_{o} \sqrt{1-2 \zeta^{2}} \quad$ Max gain frequency
$T_{p}=\frac{\pi}{\omega_{0} \sqrt{1-\zeta^{2}}} \quad$ time to peak

$$
\zeta=\cos \theta
$$

$T_{s}=T_{2 \%}=\frac{4}{\sigma} \quad 2 \%$ Settling Time
$M_{m}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}$
Max gain
$\frac{1}{2 \zeta}$
Gain at corner freq

ζ	Tp	$\% \mathrm{OS}$	ω_{m}	Mm	$\mathrm{Mm}(\mathrm{dB})$
0.1	3.15	72.81	0.99	5.03	14.02
0.2	3.21	51.97	0.96	2.55	8.14
0.3	3.29	35.5	0.91	1.75	4.85
0.4	3.43	22.4	0.82	1.36	2.7
0.5	3.63	12.31	0.71	1.15	1.25
0.6	3.93	5.26	0.53	1.04	0.35
0.7	4.4	1.34	0.14	1	0
0.8	5.24	0.09	0	1	0
0.9	7.21	0	0	1	0
1.0	-	0	0	1	0

