
Solution to Homework #3: ECE 461 / 661
Analog Inputs, Flow Control - Due Monday, September 10th

You may work in groups of 1-3 if you like.

Homework can be turned in in class, in my office, or emailed to jacob_glower@yahoo.com

Problem 1: Write a ladder logic program for a traffic light where the Red / Green times depend upon
traffic. Assume sensors detect the traffic each direction (0 = no traffic, 1000 = 10V = heavy traffic)

Analog Input 03 = E/W traffic (0 to 1000)
Analog Input 04 = N/S traffic (0 to 1000)

The green times should be related to the traffic:
if NS - EW = 1000,

Green = 7 seconds
Yellow = 2 seconds (fixed)
Red = 3 seconds

If (NS - EW) = 0
Green = 5 seconds
Yellow = 2 seconds
Red = 5 seconds

If (NS - EW) = -1000,
Green = 3 seconds
Yellow = 2 seconds
Red = 7 seconds

Problem 2: Demonstate your program (in person or with a video)

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

N/S - E/W

Seconds

Red

Yellow

Green

Solution:

Rung 1..6: Convert the analog inputs into the green time and red times.

Rung 1: Analog inputs are unsigned integers. Convert these to DINT variables so that negative numbers
are permitted.

Rung 2 - 3: Implement the computations:

Green = 2 ⋅ (N/S − E/W) + 5000
so that the green time goes from 3000 (NS - EW = -1000) to 7000 (NS - EW = +1000)

Rung 4: Compute the red time

Red = 10000 −Green
Rung 5: Convert the green and red times to type TIME.

Rung 6-9: Implement the stoplight with
GreenTime setting the green time (3000ms to 7000ms)
YellowTime = 2000ms
RedTime going from 7000ms to 3000ms

Repeat over and over

A PLC is to control a pop machine. The coin slot can accept either nickles, dimes, or quarters.
When you add 50 cents or more, the red light turns on indicating that you have enough money to
buy a pop.
If there is more than 50 cents in the machine when you press a select button (yellow, green, blue),
then

The corresponding light turns on for 2 seconds then turns off, indicating that a pop has been
dispensed, and
If you added more than 50 cents, change is given. The red light is turned off for 2 seconds.
If change is due, the red light turns back on for 2 seconds indicating that a nickle was returned
Change continues to be given until you have no change due.

IN-0

IN-1

IN-2

IN-3

IN-4

IN-5

5 Cents

10 Cents

25 Cents

Yellow Soda

Green Soda

Blue Soda

Out-0

Out-1

Out-2

Out-3

50 Cents Deposited

Dispense Yellow Soda

Dispense Green Soda

Dispense Blue Soda

Mico-810

PLC

Problem 3) Wite a ladder-logic program to implement the soda pop controller that gives change.

Problem 4) Demonstrate that your program works (video or in-person demo is OK)

Soda Pop: Ladder Logic Solution

Rung 1-3: Constantly monitor the buttons and add to the money input into the soda pop machine (N)
each pass.

Rung 4: If you input more than 50 cents, jump to the Change routine to return a nickel at a time until you
get to 50 cents.

Rung 5: If you have less than 50 cents and you're not dispensing a pop at present, exit

Rung 6: If there's 50 cents in the machine, turn the red light on, indicating that you're ready to dispense a
pop.

Rung 7-11: Dispense a Pop routine.

If the red light is on (50 cents is in the machine), monitor the Pop buttons. If one is pressed, turn on the
corresponding light for 2 seconds.

Rung 10: If any button is pressed, immediately clear N, preventing you from getting another pop for free
 (this turns off the red light in the next pass in rung #6)

Rung 12-15: Change routine. Toggle the red light every 500ms. On the falling edge of the red light,
decrement the coins by 5 cents.

Soda Pop: Structured Text Solution
; Pascal doesn't have a rising edge input, so create it. If the previous
; input was false and the present input is true, you see a rising edge.
; On the rising edges, increment how much money you have

IF(NOT(Old_DI00) and _IO_EM_DI_00) THEN
 Money := Money + 5;
 END_IF;

IF(NOT(Old_DI01) and _IO_EM_DI_01) THEN
 Money := Money + 10;
 END_IF;

IF(NOT(Old_DI02) and _IO_EM_DI_02) THEN
 Money := Money + 25;
 END_IF;

Old_DI00 := _IO_EM_DI_00;
Old_DI01 := _IO_EM_DI_01;
Old_DI02 := _IO_EM_DI_02;

; Change Routine. If you have added more than 50 cents, toggle the red
; LED every 500ms. On the falling edge, also decrement the amound of
; money by 5 cents

IF(Money > 50) THEN
 TON_1(not(TON_1.Q), T#500ms);

 IF(TON_1.Q) THEN
 _IO_EM_DO_00 := not(_IO_EM_DO_00);
 IF(_IO_EM_DO_00) THEN
 Money := Money - 5;
 END_IF;
 END_IF;
 END_IF;

; Dispense Pop Routine. If you have 50 cents, then turn on the red light.
; Check the buttons to see which type of pop you want
; Pop = 0: no button was pressed
; Pop = 1: yellow pop
; Pop = 2: green pop
; Pop = 3: blue pop

IF(Money = 50) THEN
 _IO_EM_DO_00 := TRUE;
 Pop := 0;
 IF(_IO_EM_DI_03) THEN
 Pop := 1;
 Money := 0;
 END_IF;
 IF(_IO_EM_DI_04) THEN
 Pop := 2;
 Money := 0;
 END_IF;
 IF(_IO_EM_DI_05) THEN
 Pop := 3;
 Money := 0;
 END_IF;
 END_IF;

; Clear the red LED when you have less than 50 cents.
; This prevents you from getting 2 pops

 IF(Money < 50) THEN
 _IO_EM_DO_00 := FALSE;
 END_IF;

; Dispense Pop routine. (This is always executed, which keeps the
; timers working). If you select a pop, turn on the corresponding light
; for 2 seconds.

TP_1(Pop = 1, T#2s);
TP_2(Pop = 2, T#2s);
TP_3(Pop = 3, T#2s);

_IO_EM_DO_01 := TP_1.Q;
_IO_EM_DO_02 := TP_2.Q;
_IO_EM_DO_03 := TP_3.Q;

; end of Soda Pop routine

