Solution \#4: ECE 461

LaPlace Transforms - 1st \& 2nd-Order Approximations - Block Diagrams

LaPlace Transforms

Problem 1: A system has the following transfer function

$$
Y=\left(\frac{10(s+6)}{(s+1)(s+7)(s+10)}\right) X
$$

1a) What is the differential equation which relates X and Y ?

$$
\begin{aligned}
& Y=\left(\frac{10(s+6)}{s^{3}+18 s^{2}+87 s+70}\right) X \\
& \left(s^{3}+18 s^{2}+87 s+70\right) Y=(10(s+6)) X \\
& y^{\prime \prime \prime}+18 y^{\prime \prime}+87 y^{\prime}+70 y=10 x^{\prime}+60 x
\end{aligned}
$$

1b) Determine $y(t)$ assuming

$$
x(t)=2+3 \cos (4 t)
$$

Use superposition

$$
\begin{array}{ll}
x(t)=2 & x(t)=3 \cos (4 t) \\
s=0 & s=j 4 \\
\left(\frac{10(s+6)}{(s+1)(s+7)(s+10)}\right)_{s=0}=0.8571 & \left(\frac{10(s+6)}{(s+1)(s+7)(s+10)}\right)_{s=j 4}=0.2014 \angle-93.8^{0} \\
y(t)=0.8571 \cdot 2 & y(t)=\left(0.2014 \angle-93.8^{0}\right) \cdot 3 \cos (4 t) \\
y(t)=1.7143 & y(t)=0.6042 \cos \left(4 t-93.8^{0}\right)
\end{array}
$$

The total answer is DC +AC

$$
y(t)=1.7143+0.6042 \cos \left(4 t-93.8^{0}\right)
$$

1c) Determine $y(t)$ assuming

$$
\begin{aligned}
& x(t)= \begin{cases}0 & t<0 \\
2 & t>0\end{cases} \\
& X(s)=\left(\frac{2}{s}\right) \\
& Y=\left(\frac{10(s+6)}{(s+1)(s+7)(s+10)}\right)\left(\frac{2}{s}\right) \\
& Y=\left(\frac{1.7143}{s}\right)+\left(\frac{-1.8519}{s+1}\right)+\left(\frac{-0.1587}{s+7}\right)+\left(\frac{0.2963}{s+10}\right) \\
& y(t)=\left(1.7143-1.8519 e^{-t}-0.1587 e^{-7 t}+0.2963 e^{-10 t}\right) u(t)
\end{aligned}
$$

1d) Compare your answer for part c) with the response from Matlab

```
t = [0:0.01:5]';
y = 1.7143 - 1.8519* exp(-t) - 0.1587*exp(-7*t) + 0.2963*exp(-10*t);
G = zpk(-6,[-1, -7,-10],10);
y0 = 2 * step(G,t);
N = [1:25:length(t)]';
plot(t,y,t(N),y0(N),'r+')
```


Problem 2: A system has the following transfer function

$$
Y=\left(\frac{50}{\left(s^{2}+2 s+10\right)(s+30)}\right) X
$$

2a) What is the differential equation which relates X and Y ?
Multiplication of polynomials is actually convoltion:

```
conv([1,2,10],[1,30])
```

$$
\begin{aligned}
& 1 \quad 32 \quad 70 \\
& Y=\left(\frac{50}{s^{3}+32 s^{2}+70 s+300}\right) X \\
& \left(s^{3}+32 s^{2}+70 s+300\right) Y=(50) X \\
& y^{\prime \prime \prime}+32 y^{\prime \prime}+70 y^{\prime}+300 y=50 x
\end{aligned}
$$

2b) Determine $y(t)$ assuming

$$
x(t)=2+3 \cos (4 t)
$$

$$
\begin{array}{ll}
x(t)=2 & x(t)=3 \cos (4 \mathrm{t}) \\
s=0 & s=j 4 \\
\left(\frac{50}{\left(s^{2}+2 s+10\right)(s+30)}\right)_{s=0}=0.1667 & \left(\frac{50}{\left(s^{2}+2 s+10\right)(s+30)}\right)_{s=j 4}=0.1652 \angle-134^{0} \\
y=(0.1667) \cdot 2 & y(t)=\left(0.1652 \angle-134^{0}\right) \cdot 3 \cos (4 t) \\
y=0.3333 & y(t)=0.4956 \cos \left(4 t-134^{0}\right)
\end{array}
$$

The total answer includes the DC and AC term

$$
y(t)=0.3333+0.4956 \cos \left(4 t-134^{0}\right)
$$

2c) Determine $y(t)$ assuming

$$
\begin{aligned}
& x(t)= \begin{cases}0 & t<0 \\
2 & t>0\end{cases} \\
& X(s)=\left(\frac{2}{s}\right) \\
& Y=\left(\frac{50}{\left(s^{2}+2 s+10\right)(s+30)}\right)\left(\frac{2}{s}\right) \\
& Y=\left(\frac{0.3333}{s}\right)+\left(\frac{0.1808 \angle-155^{0}}{s+1+j 3}\right)+\left(\frac{0.1808 \angle 155^{0}}{s+1-j 3}\right)+\left(\frac{-0.0039}{s+30}\right) \\
& y(t)=\left(0.3333+0.3616 e^{-t} \cos \left(3 t+155^{0}\right)-0.0039 e^{-30 t}\right) u(t)
\end{aligned}
$$

2d) Compare your answer for part c) with the response from Matlab

```
t = [0:0.01:5]';
y = 0.3333 + 0.3616* exp(-t).*}\operatorname{cos(3*t+2.7053) - 0.0039* exp(-30*t);
G = tf(50,[1,32,70,300]);
y0 = 2 * step(G, t);
N = [1:25:length(t)]';
plot(t,y,t(N),y0(N),'r+')
```


1st \& 2nd Order Approximations

Problem 3: Determine a 1st-order system which has approximately the same step response as this system

$$
Y=\left(\frac{100,000}{(s+2)(s+7)(s+10)(s+15)}\right) X
$$

The dominant pole is at -2

$$
\left(\frac{100,000}{(s+2)(s+7)(s+10)(s+15)}\right) \approx\left(\frac{a}{s+2}\right)
$$

Matching the DC gain

$$
\begin{aligned}
& \left(\frac{100,000}{(s+2)(s+7)(s+10)(s+15)}\right)_{s=0}=47.619 \\
& \left(\frac{a}{s+2}\right)_{s=0}=47.619
\end{aligned}
$$

$$
a=95.238
$$

so

$$
\left(\frac{100,000}{(s+2)(s+7)(s+10)(s+15)}\right) \approx\left(\frac{95.318}{s+2}\right)
$$

Compare the step response of the two systems in Matlab (or similar program)

```
t = [0:0.01:5]';
G4 = zpk([],[-2,-7,-10,-15],100000);
G1 = tf(95.318,[1,2]);
t = [0:0.01:4]';
y1 = step(G1,t);
y4 = step(G4,t);
plot(t,y4,t,y1,'r');
```


Step Response of 4th-Order System (blue) and 1st-Order Approximation (red)
Problem 4: Determine a 2nd-order system which has approximately the same step response as this system

$$
Y=\left(\frac{100,000}{\left(s^{2}+3 s+15\right)(s+20)(s+50)}\right) X
$$

The dominant pole is the complex pair

$$
\left(\frac{100,000}{\left(s^{2}+3 s+15\right)(s+20)(s+50)}\right) \approx\left(\frac{a}{s^{2}+3 s+15}\right)
$$

Match the DC gain

$$
\begin{aligned}
& \left(\frac{100,000}{\left(s^{2}+3 s+15\right)(s+20)(s+50)}\right)_{s=0} \approx\left(\frac{a}{s^{2}+3 s+15}\right)_{s=0}=6.6666 \\
& a=100
\end{aligned}
$$

so

$$
\left(\frac{100,000}{\left(s^{2}+3 s+15\right)(s+20)(s+50)}\right) \approx\left(\frac{100}{s^{2}+3 s+15}\right)
$$

Compare the step response of the two systems in Matlab (or similar program)

```
den = conv([1,3,15],[1,20])
den = conv(den, [1,50])}\mp@subsup{}{1}{\prime
G4 = tf(100000,den);
G1 = tf(100,[1,3,15]);
t = [0:0.01:5]';
y1 = step(G1,t);
y4 = step(G4,t);
plot(t,y4,t,y1,'r');
```


Step Response of 4th-Order System (blue) and 1st-Order Approximation (red)

Problem 5: Find the transfer function for a system with the following step response:

This is a 1st-order system

$$
G(s) \approx\left(\frac{a}{s+b}\right)
$$

The DC gain is 34

$$
\left(\frac{a}{s+b}\right)_{s=0}=\left(\frac{a}{b}\right)=34
$$

The 2% settling time is about 0.8 seconds

$$
\begin{aligned}
& t_{2 \%}=\left(\frac{4}{b}\right)=0.8 \\
& b=5
\end{aligned}
$$

so

$$
G(s) \approx\left(\frac{170}{s+5}\right)
$$

Problem 6: Find the transfer function for a system with the following step response:

This is a 2nd-order system: It oscillates meaning it has a complex pole along with its conjugate

$$
G(s) \approx\left(\frac{a}{(s+b+j c)(s+b-j c)}\right)
$$

The DC gain is about 150

$$
\left(\frac{a}{(s+b+j c)(s+b-j c)}\right)_{s=0}=150
$$

The 2% settling time is about 2.6 seconds (telling you the real part of the pole)

$$
\begin{aligned}
& t_{2 \%}=\frac{4}{b}=2.6 \\
& b=1.5385
\end{aligned}
$$

The frequency of oscillation (tells you the complex part of the pole)

$$
\begin{aligned}
& c=\left(\frac{2 \text { cycles }}{2.6 \text { seconds }}\right) \cdot 2 \pi \\
& c=4.833
\end{aligned}
$$

so

$$
G(s) \approx\left(\frac{3859}{(s+1.5385+j 4.833)(s+1.5385-j 4.833)}\right)
$$

notes:

- The numerator was chosen so that the DC gain is 150)
- Answers will vary - it's hard to read this graph to 4 decimal places

Block Diagrams

Problem 7) Find the transfer function from X to Y

$$
\begin{aligned}
& Y=\left(\frac{\sum \text { gains from } \mathrm{X} \text { to } \mathrm{Y}}{1+\sum \text { Loop Gains }}\right) X \\
& Y=\left(\frac{A C}{1+A+A B+A C D}\right) X
\end{aligned}
$$

Problem 8: Find the transfer funciton from X to Y

$$
\begin{aligned}
& Y=\left(\frac{\sum \text { gains from } \mathrm{X} \text { to } \mathrm{Y}}{\left.1+\sum_{\text {Loop Gains }}\right) X}\right. \\
& Y=\left(\frac{G F+G K}{1+G K H}\right) X
\end{aligned}
$$

Problem 9: Find the transfer funciton from X to Y

$$
\begin{aligned}
& Y=\left(\frac{\sum \text { gains from } \mathrm{X} \text { to } \mathrm{Y}}{\left.1+\sum_{\text {Loop Gains }}\right) X}\right. \\
& Y=\left(\frac{A B C D}{1+B C E+A B C D F}\right) X
\end{aligned}
$$

