Solution to Homework \#9: ECE 461/661

Meeting design specs, Delays, Lightly Damped Systems

Problem 1: Delays. Assume you have a system with a 200ms delay:

$$
G(s)=\left(\frac{200}{(s+2)(s+5)(s+10)(s+15)}\right) \cdot e^{-0.2 s}
$$

Design a compensator which results in the closed-loop system having

- 20% overshoot for a step input.
- No error for a step input, and
- A 2% settling time of 4 seconds

Let

$$
K(s)=k\left(\frac{(s+2)(s+5)}{s(s+a)}\right)
$$

At $\mathrm{s}=-1+\mathrm{j} 2$

$$
\begin{aligned}
& G K=\left(\left(\frac{200}{s(s+a)(s+10)(s+15)}\right) \cdot e^{-0.2 s}\right)_{s=-1+\mathrm{j} 2}=1 \angle 180^{0} \\
& \left(\left(\frac{200}{s(s+10)(s+15)}\right) \cdot e^{-0.2 s}\right)_{s=-1+\mathrm{j} 2}=0.8379 \angle-160.14^{0}
\end{aligned}
$$

meaning that the term $(\mathrm{s}+\mathrm{a})$ contributes another 19.85 degrees

$$
\begin{aligned}
& \angle(s+a)=19.85^{\circ} \\
& a=1+\frac{2}{\tan (19850)}=6.537 \%
\end{aligned}
$$

and

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+2)(s+5)}{s(s+6.5377)}\right) \\
& G K=\left(\left(\frac{200}{s(s+6.5377)(s+10)(s+15)}\right) \cdot e^{-0.2 s}\right)_{s=-1+j 2}=0.1423 \angle 180^{0} \\
& k=\frac{1}{0.1423}=7.0271 \\
& K(s)=7.0271\left(\frac{(s+2)(s+5)}{s(s+6.5377)}\right)
\end{aligned}
$$

Design an op-amp circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{s+2}{s}\right)\left(\frac{7.02(s+5)}{(s+6.5377)}\right)
$$

Determine the dominant poles of the closed-loop system

$$
s=-1+j 2
$$

Plot the step response of the closed-loop system using VisSim (or similar program)

Problem 2: Lightly Damped Systems: Assume you have a system which is lightly damped:

$$
G(s)=\left(\frac{200}{(s+2)(s+j 4)(s-j 4)}\right)
$$

Design a compensator which results in the closed-loop system having

- 20% overshoot for a step input.
- No error for a step input, and
- A 2% settling time of 4 seconds
- Design an op-amp circuit to implement K(s)
- Determine the dominant poles of the closed-loop system
- Plot the step response of the closed-loop system using VisSim (or similar program)

Step 1: Stabilize the System. Ignore the requirements - just come up with a compensator to stabilize the closed-loop system.

$$
\begin{aligned}
& K_{1}(s)=\left(\frac{(s+1)(s+2)}{(s+10)(s+11)}\right) \\
& G K_{1}=\left(\frac{200(s+1)}{(s+j 4)(s-j 4)(s+10)(s+11)}\right)
\end{aligned}
$$

Sketch the root locus

It's not great, but at least it's stable. Pick a spot on the root locus and find k:

```
>> G = zpk([],[-2,j*4,-j*4],200);
>> tf(G)
    200
---------------
s^3 + 2 s^2 + 16 s + 32
>> K1 = zpk([-1,-2],[-10,-11],1);
>> GK1 = G*K1;
```

```
>> s = -0.52 + j*6;
>> evalfr(GK1,s)
    -0.4272 - 0.0430i
>> 1/abs(ans)
        2.3288
>> K1 = zpk([-1,-2],[-10,-11],2.3288)
    2.3288(s+1)(s+2)
K1 = -----------------
    (s+10) (s+11)
    K
>> G2 = minreal( G*K1 / (1 + G*K1) )
    465.76 (s+1)
G2 = -------------------------------------------
        (s+3.902) (s+15.64) (s^2 + 1.459s + 36.47)
>> roots([1,1.459,36.47])
    -0.7295 + 5.9948i
    -0.7295 - 5.9948i
```

Add a second compensator to meet the requirements

$$
\begin{aligned}
& K_{2}=\left(\frac{(s+3.902)(s+0.7295+j 6)(s+0.7295-j 6)}{s(s+1)(s+a)}\right) \\
& G_{2} K_{2}=\left(\frac{400}{s(s+a)(s+15.64)}\right)
\end{aligned}
$$

Pick 'a' so that $\mathrm{s}=-1+\mathrm{j} 2$ is on the root locus

$$
\left(\frac{400}{s(s+15.64)}\right)_{s=-1+j 2}=12.106 \angle-124.34^{0}
$$

For the angles to add to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=55.66^{0} \\
& a=1+\frac{2}{\tan \left(55.66^{0}\right)}=2.367
\end{aligned}
$$

meaning

$$
\begin{aligned}
& G_{2} K_{2}=\left(\frac{400}{s(s+2.367)(s+15.64)}\right) \\
\gg & \text { K2 }=\operatorname{zpk}([-3.902,-0.7295+j * 6,-0.7295-j * 6],[0,-1,-2.367], 1) ; \\
\gg & \text { evalfr }\left(G 2^{*} K 2,-1+j * 2\right) \\
& -5.8299-0.0012 i \\
\gg & 1 / \mathrm{abs}(\text { ans })
\end{aligned}
$$

```
    0.1715
>> K2 = zpk([-3.902,-0.7295+j*6,-0.7295-j*6],[0,-1,-2.367],0.1715)
    0.1715 (s+3.902) ( s^2 + 1.459s + 36.53)
K2 =
    s (s+1) (s+2.367)
>> tf(K2)
0.1715 s^3 + 0.9194 s^2 + 7.242 s + 24.45
    s^3 + 3.367 s^2 + 2.367 s
```

Checking in VisSim (or Simulink)

