
Solution to Homework #11: ECE 461/661
Discrete-Time Compensator Design. Due Monday, November 19, 2018

Assume

G(s) = ⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠

Problem 1: Assume a sampling rate of 100ms.

Design a compensator, K(z), which results in
20% overshoot for a step input.
No error for a step input, and
A 2% settling time of 2 seconds

Translation:
Make it a type-1 system
Place the closed-loop dominant pole at s = -2 + j4

Pick K(z) to
Add a pole at s = 0 (z = 1)
Cancel the poles at s = -2 (z = -0.819)
Cancel the pole at s = -5 (z = -0.607)
Add a a pole (somewhere) to place the closed-loop dominant pole at s = -2 + j4

The net open-loop system is then:

G(s) ⋅K(z) ⋅ Δ = ⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠ ⋅

⎛
⎝
(z−0.819)(z−0.607)

(z−1)(z−a)
⎞
⎠ ⋅ e

−0.05s

Evaluate what you know at
s = -2 + j4
z = 0.7541 + j0.3188 (z = esT)

⎛
⎝
⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠ ⋅

⎛
⎝
(z−0.819)(z−0.607)

(z−1)
⎞
⎠ ⋅ e

−0.1s⎞
⎠ s=−2+j4

= 0.0258∠− 159.10

For the angles to add up to 180 degrees

∠(z − a) = 20.90

a = 0.7541 − 0.3188

tan ⎛⎝20.90 ⎞
⎠
= −0.0834

so

G(s) ⋅K(z) ⋅ Δ = ⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠ ⋅

⎛
⎝
(z−0.819)(z−0.607)
(z−1)(z−0.0834)

⎞
⎠ ⋅ e

−0.05s

At any point on the root locus, GK = -1

⎛
⎝
⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠ ⋅

⎛
⎝
(z−0.819)(z−0.607)
(z−1)(z+0.0834)

⎞
⎠ ⋅ e

−0.05s⎞
⎠ s=−2+j4

= 0.0288∠1800

to make the gain one

k = 1
0.0288 =34.7658

resulting in

K(z) = 34.7658⎛⎝
(z−0.819)(z−0.607)
(z−1)(z+0.0834)

⎞
⎠

Write pseudo-code to implement K(z)

Y = 34.7658⎛⎝
(z−0.819)(z−0.607)
(z−1)(z+0.0834)

⎞
⎠X

(z2 − 0.9166z − 0.0834)Y = 34.7658(z2 − 1.4260z + 0.4971)X
Code:

while(1) {

 x2 = x1; // x(k-2)
 x1 = x0; // x(k-1)
 x0 = A2D_Read(0); // x(k)

y2 = y1; // y(k-2)
 y1 = y0; // y(k-1)
 y0 = 0.9166*y1 +0.0834*y2 + 34.7658*(x0 - 1.4260*x1 + 0.4871*x2);

 Wait_100ms();

 }

Plot the step response of the closed-loop system

Problem 2: Assume a sampling rate of 250ms.
Design a compensator, K(z), which results in

20% overshoot for a step input.
No error for a step input, and
A 2% settling time of 2 seconds

Write pseudo-code to implement K(z)
Plot the step response of the closed-loop system using VisSim or Simulink (or similar program)

First, compute the closed-loop pole location in the z-plane:
>> T = 0.25;
>> s = -2 + j*4;
>> z = exp(s*T)

z = 0.3277 + 0.5104i

Find

G(s) ⋅ ΔT/2 ⋅K(z) = 1∠1800

⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠ ⋅ e

−0.125s ⋅K(z) = 1∠1800

Pick the zeros of K(z) to cancel the poles at s = -2 and s = -5

>> exp(-2*T)

ans = 0.6065

>> exp(-5*T)

ans = 0.2865

so

K(z) = k⎛⎝
(z−0.6065)(z−0.2865)

(z−1)(z−a)
⎞
⎠

Evaluate what you know:

⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠ ⋅ e

−0.125s ⋅ ⎛⎝
(z−0.6065)(z−0.2865)

(z−1)
⎞
⎠ = 0.0373∠− 1540

To make the angles 180 degrees

∠(z − a) = 25.78760

a = 0.3277 −
⎛

⎝
⎜ 0.5104

tan ⎛⎝25.78760 ⎞
⎠

⎞

⎠
⎟ = −0.7287

and

K(z) = k⎛⎝
(z−0.6065)(z−0.2865)

(z−1)(z+0.7287)
⎞
⎠

To get the gain:

⎛
⎝

200
(s+2)(s+5)(s+10)(s+15)

⎞
⎠ ⋅ e

−0.125s ⋅ ⎛⎝
(z−0.6065)(z−0.2865)

(z−1)(z+0.7287)
⎞
⎠ = 0.0317∠1800

k = 1
0.0317 = 31.5085

giving

K(z) = 31.5085⎛⎝
(z−0.6065)(z−0.2865)

(z−1)(z+0.7287)
⎞
⎠

Write pseudo-code to implement K(z)

K(z) = 31.5085⎛⎝
z2−0.893z+0.1738
z2−0.2713z−0.7287

⎞
⎠

while(1) {

 x2 = x1; // x(k-2)
 x1 = x0; // x(k-1)
 x0 = A2D_Read(0); // x(k)

y2 = y1; // y(k-2)
 y1 = y0; // y(k-1)
 y0 = 0.2713*y1 + 0.7287*y2 + 31.5085*(x0 - 0.893*x1 + 0.1738*x2);

 Wait_100ms();

 }

Checking in VisSim

