
ECE 461/661 - Final Exam:  Name   Solution   

Fall 2018

1)  Assume X and Y are related by the following transfer function

Y = 


20

(s+2)(s+5)

X

1a)  Find y(t) assuming

x(t) = 2 + 3 cos(4t)

This is an input which has been around for all time.  This means

You're looking for the steady-state solution,

You should use phasors to solve the problem

(LaPlace transforms also work but is a LOT harder)

Use superposition

x(t) = 2 x(t) = 3 cos(4t)

X = 2  (phasor form) X = 3 + j0 (phasor form)

s = 0 s = j4




20

(s+2)(s+5)



s=0

= 2 


20

(s+2)(s+5)



s=j4

= 0.698∠ − 1020

Y = 2 ⋅ 2 Y = (0.698∠ − 1020)(3 + j0)

Y = 4 Y = 2.095∠ − 1020

which means which means

y(t) = 4 y(t) = 2.095 cos (4t − 1020)

The total answer is then

y(t) = 4 + 2.095 cos (4t − 1020)



1b)  Find y(t) assuming

x(t) = 2u(t) =





2 t > 0

0 otherwise

This is a system which turned on at time equals zero, meaning

The transient response is important

You need to use LaPlace transforms to solve

Convert to LaPlace

Y = 


20

(s+2)(s+5)

X

Y = 


20

(s+2)(s+5)





2
s



use partial fractions

Y = 


4
s

 + 

−6.667

s+2

 + 

2.667

s+5



Take the inverse LaPlace transform

t > 0y(t) = 4 − 6.667e−2t + 2.667e−5t



2a)  Determine the transfer function for the system with the following step response

This is a 2nd-order system (it oscillates, meaning energy is bouncing back and forth between two states).  To find

the transfer funciton, you need three terms

DC Gain:  1.7

Frequency of Oscillation:

   rad/secω = 2πf = 2π
3 cycles

0.92 seconds


 = 20.49

Settling Time:  Ts = 1.1 second (approx)

σ = 4

Ts
= 3.63

So, the transfer funciton is

G(s) ≈ 


736

(s+3.63+j20.49)(s+3.63−j20.49)



( the numerator is whatever it took to make the DC gain equal to 1.7 )



2b)  Determine the transfer function for the system with the following frequency response

First, draw in the straight-line approximations.  Make sure each slope is a multiple of 20dB/decade

The corners mark the poles and zeros

There is a zero left of 0.1.  Assume the zero is at s = 0

There is a pole at 0.8 rad/sec

There are two poles at 20 rad/sec

For the two poles, the angle comes from

gain at corner = +9dB = 2.818

1

2ζ
= 2.818

ζ = 0.177

θ = arccos (ζ) = 79.80

so

G(s) ≈





399s

(s+0.8)s+20∠±79.80 







To find the gain (399) pick any point.    At s = j1, the gain is 0db = 1






ks

(s+0.8)s+20∠±79.80 







s=j1

= 1

+20dB/dec

pole

0dB/dec

-40dB/dec

2 poles



3a) Write four coupled differential equations to describe the dynamics of this circuit

V1 Y = V2

I3 I4

+

-
Vin

10

20

30

40

0.1F 0.2F

0.1H 0.2H

I1 = 0.1V

.

1 = I3 − I4 −
V1

20

I2 = 0.2V

.

2 = I4 −
V2

40

V3 = 0.1I

.

3 = V in − 10I3 − V1

V4 = 0.2I

.

4 = V1 − 30I4 − V2

3b)  Express these dynamics in state-space form

V

.

1 = 10I3 − 10I4 − 0.5V1

V

.

2 = 5I4 − 0.125V2

I

.

3 = 10V in − 100I3 − 10V1

I

.

4 = 5V1 − 150I4 − 5V2

In matrix form
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Y = V2 =  0 1 0 0 
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
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4)  Sketch the root locus for

G(s) = 


100

(s+1)(s+4)(s+5)(s+6)



Determine the following:

Real Axis Loci (-1, -4)  (-5, -6)

Breakaway Points (approx) -1.941,  -5.605

jw Crossing (approx) j3.482

Asymptotes show on graph

0-1-2-3-4-5-6-7-8-9-10
-j

0

j

j2

j3

j4

There are 4 poles and no zeros, meaning there are 4 asymptotes

Angle = 
1800+N⋅3600

4
= {±450, ±1350}

The intersect is the center of mass




−1−4−5−6

4

 = −4



5)  Assume a system has the following dynamics:

G(s) = 


100

(s+2)(s+4)(s+10)



Design a compensator, K(s), so that the closed-loop system has

No error for a step input, and

Closed-loop dominant poles at s = -3 + j2

( note:  this implies  )GK(−3 + j2) = 1∠1800

Pick K(s) to be of the form

K = 


k(s+2)(s+4)

s(s+a)



Find 'a' so that -3 + j2 is on the root locus (angles add up to 180 degrees).  Taking the part you know:

GK = 


100

s(s+10)



s=−3+j2

= 3.810∠ − 162.20

To make the angles add up to 180 degrees

∠(s + a) = 17.7450

a = 2

tan 17.7450 


+ 3 = 9.25

This results in

GK = 


100

s(s+9.25)(s+10)



s=−3+j2

= 0.581∠1800

Pick 'k' to make the gain one

k = 1

0.581
= 17.23

and

K(s) = 


17.23(s+2)(s+4)

s(s+9.25)





6)  Assume a system has the following dynamics:

G(s) = 


100

(s+2)(s+4)(s+10)



Design a digital compensator, K(z), so that the closed-loop system has

No error for a step input,

Closed-loop dominant poles at s = -3 + j2, and

Assume a sampling rate of T = 100ms ( T = 0.1 )

Solve as

G(s) ⋅ e−sT/2 ⋅ K(z) = 1∠1800

Let

K(s) = 


k(s+2)(s+4)

s(s+a)



Converting to the z-plane   ( conversion is  )z = esT

K(z) = 


k(z−0.819)(z−0.670)

(z−1)(z−b)



Evaluate what you know






100

(s+2)(s+4)(s+10)

 ⋅ e−sT/2 


s=−3+j2

⋅ 
(z−0.819)(z−0.670)

(z−1)



z=0.726+j0.147

= 0.281∠ − 1620

For the angles to add up to 180 degrees

∠(z − b) = 17.9970

b = 0.726 − 0.147

tan 17.9970 


= 0.274

Evaluating the whole mess again






100

(s+2)(s+4)(s+10)

 ⋅ e−sT/2 


s=−3+j2

⋅ 
(z−0.819)(z−0.670)

(z−1)(z−0.274)



z=0.726+j0.147

= 0.592∠1800

k makes the gain one 

k = 1

0.592
= 1.690

K(z) = 


1.690(z−0.819)(z−0.670)

(z−1)(z−0.274)





7)  Assume a system has the following dynamics:

G(s) = 


100

(s+2)(s+4)(s+10)



Design a compensator, K(s), so that the closed-loop system has

A DC gain of one ( no error for a step input),

A 0dB gain frequency of 5 rad/sec, and

A phase margin of 50 degrees

( note: this implies    )GK(j5) = 1∠ − 1300

Let

K(s) = 


k(s+2)(s+4)

s(s+a)



then

GK = 


100k

s(s+10)(s+a)



s=j5

= 1∠ − 1300

Evaluate what you know




100

s(s+10)



s=j5

= 11.7889∠ − 116.50

For the angles to add up to -130 degrees

∠(s + a) = 13.430

a = 5

tan 13.430 


= 20.93

So now




100

s(s+10)(s+20.93)



s=j5

= 0.0831∠ − 1300

k = 1

0.0831
= 12.029

and

K(s) = 


12.029(s+2)(s+4)

s(s+20.93)





8a)  Determine a discrete-time equivalent to K(s).  Assume a sampling rate of 100ms  (T = 0.1)

K(s) = 


20(s+3)(s+5)

s(s+10)



s = -3 s = -5

z = esT = e−3T = 0.7408 z = e−5T = 0.6065

s = 0 s = -10

z = e0T = 1 z = e−10T = 0.3679

so

K(z) = 


(z−0.7408)(z−0.6065)

(z−1)(z−0.3679)



Match the gain at some frequency.  DC doesn't work (the DC gain is infinity), so pick s = j0.1




20(s+3)(s+5)

s(s+10)



s=j0.1

= 300.21∠ − 87.50




(z−0.7408)(z−0.6065)

(z−1)(z−0.3679)



z=ej0.1T

= 16.147∠ − 87.50

The gain is off by 18.59, so

K(z) = 


18.59(z−0.7408)(z−0.6065)

(z−1)(z−0.3679)



8b)  Design a circuit to implement K(s)

K(s) = 


20(s+3)(s+5)

s(s+10)

 = 


2(s+3)

s





10(s+5)

s+10



1M

500k

0.333uF

1M

100k 100k

2uF




