ECE 461/661 - Test \#2: Name

October 19, 2018

1) Give the transfer function for a system with the following response to a unit step input:

2) For the following mass-spring system:

a) Write the dynamics of this system as four compled differential equations in terms of \{Vin, V1, V2, I3, I4\}
b) Express these dynamics in state-space form

3) For the following block diagram, find the transfer funciton from X to Y

4) Sketch the root locus for

$$
G(s)=\left(\frac{10}{s(s+4)(s+7)}\right)
$$

Determine the following as well:

Real Axis Loci	
Breakaway Points (approx)	
jw Crossing (approx)	
Asymptotes	

5) Sketch the root locus for

$$
s(s+5)(s+1+j 3)(s+1-j 3)+5 k=0
$$

Determine the following as well:

Real Axis Loci	
Breakaway Points (approx)	
jw Crossing (approx)	
Departure Angle from pole at $\mathrm{s}=-2+\mathrm{j} 3$	
Asymptotes	

2nd-Order Approximations

$$
\begin{gathered}
G(s)=\left(\frac{k \cdot \omega_{o}^{2}}{s^{2}+2 \zeta \omega_{o} s+\omega_{o}^{2}}\right)=\left(\frac{k \cdot\left(\sigma^{2}+\omega_{d}^{2}\right)}{\left(s+\sigma+j \omega_{d}\right)\left(s+\sigma-j \omega_{d}\right)}\right) \\
s=-\sigma \pm j \omega_{d}=\omega_{o} \angle \pm \theta
\end{gathered}
$$

$\% O S=\exp \left(-\left(\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)\right)$ \% Overshoot
$\omega_{m}=\omega_{o} \sqrt{1-2 \zeta^{2}} \quad$ Max gain frequency
$T_{p}=\frac{\pi}{\omega_{0} \sqrt{1-\zeta^{2}}} \quad$ time to peak

$$
\zeta=\cos \theta
$$

$T_{s}=T_{2 \%}=\frac{4}{\sigma} \quad 2 \%$ Settling Time
$M_{m}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}$
Max gain
$\frac{1}{2 \zeta}$
Gain at corner freq

ζ	Tp	$\% \mathrm{OS}$	ω_{m}	Mm	$\mathrm{Mm}(\mathrm{dB})$
0.1	3.15	72.81	0.99	5.03	14.02
0.2	3.21	51.97	0.96	2.55	8.14
0.3	3.29	35.5	0.91	1.75	4.85
0.4	3.43	22.4	0.82	1.36	2.7
0.5	3.63	12.31	0.71	1.15	1.25
0.6	3.93	5.26	0.53	1.04	0.35
0.7	4.4	1.34	0.14	1	0
0.8	5.24	0.09	0	1	0
0.9	7.21	0	0	1	0
1.0	-	0	0	1	0

