ECE 461/661 Final: Name

Fall 2019

1) Find the transfer function for the system with the following step response

2) Write N coupled differential equations that describe the dynamics for the following circuit

Express these dynamics in state-space form

3) Sketch the root locus for the following system. Include the following

$$
G(s)=\left(\frac{100(s+2)}{s(s+5)(s+5+j 2)(s+5-j 2)}\right)
$$

Root Locus Plot	show on graph
Real Axis Loci	
Breakaway Points (approx)	
jw crossing (approx)	show on graph
Asymptotes	
Departure Angle from pole at $\mathrm{s}=-5+\mathrm{j} 2$	

4) The root locus for $G(s)$ is shown below. Determine the gain, k, which results in the closed-loop system having 30% overshoot for a step input.

$$
G(s)=\left(\frac{200}{s(s+4)(s+6)}\right)
$$

Damping Ratio (30\% overshoot)	
Closed-Loop Domionant Poles	
Gain, k	

5) Assume

$$
G(s)=\left(\frac{200}{(s+4)(s+6)(s+10)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, so that the closed-loop system has

- No error for a step input
- Closed-loop dominant poles at $\mathrm{s}=-3+\mathrm{j} 6$

6) Assume G(s) is

$$
G(s)=\left(\frac{200}{(s+4)(s+6)(s+10)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, so that the closed-loop system has

- No error for a step input
- A 0 dB gain frequency of $6 \mathrm{rad} / \mathrm{sec}$, and
- A 47 degree phase margin

7) Assume

$$
K(s)=\left(\frac{50(s+3)(s+5)}{s(s+10)}\right)
$$

a) Design a circuit to implement $K(s)$

b) Determine the discrete-time equivalent, $\mathrm{K}(\mathrm{z})$, with $\mathrm{T}=0.01$

