ECE 461 - Final: Name

Fall-2020

Problem \#1: 2nd Order Approximations

1a) Give the transfer function for a system with the following step response:

DC gain $=11.2$
Frequency of oscillation $=\left(\frac{3 \text { cycles }}{0.82 \mathrm{~s}}\right) 2 \pi=22.98 \frac{\mathrm{rad}}{\mathrm{sec}}$
2% settling time $=1.3$ seconds

$$
\begin{aligned}
& \sigma=\frac{4}{1.3}=3.07 \\
& G(s) \approx\left(\frac{6,020}{(s+3.07+j 22.98)(s+3.7-j 22.98)}\right)
\end{aligned}
$$

1b) What is the step response for the following system:
$Y=\left(\frac{2000}{(s+7+j 12)(s+7-j 12)(s+40)}\right) X$

DC Gain	2% Settling Time	\% Overshoot
$\mathbf{0 . 2 5 9 1}$	$\mathbf{4} / 7 \mathrm{sec}$	$\mathbf{1 6 . 0 \%}$

$$
\begin{aligned}
& \theta=\arctan \left(\frac{12}{7}\right)=59.74^{0} \\
& \zeta=\cos \theta=0.5039 \\
& O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)=16.0 \%
\end{aligned}
$$

Problem 2: Modeling and State Space

2a) Write the differential equations which describe the following circuit (i.e. write the N differential equations which correspond to the voltage node equations)

$$
\begin{aligned}
& V_{1}=0.2 \dot{I}_{1}=V_{i n}-10 I_{1}-V_{3} \\
& V_{2}=0.25 \dot{I}_{2}=V_{3}-20 I_{2} \\
& I_{3}=0.1 \dot{V}_{3}=I_{1}-I_{2}-\left(\frac{V_{3}-V_{4}}{70}\right) \\
& I_{4}=0.5 \dot{V}_{4}=\left(\frac{V_{3}-V_{4}}{70}\right)
\end{aligned}
$$

Output

$$
\begin{aligned}
& \left(\frac{Y-V_{3}}{30}\right)+\left(\frac{Y-V_{4}}{40}\right)=0 \\
& Y=\left(\frac{4}{7}\right) V_{3}+\left(\frac{3}{7}\right) V_{4}
\end{aligned}
$$

2b) Express these dynamics in state-space form
Group terms

$$
\begin{aligned}
& \dot{I}_{1}=5 V_{i n}-50 I_{1}-5 V_{3} \\
& \dot{I}_{2}=4 V_{3}-80 I_{2} \\
& \dot{V}_{3}=10 I_{1}-10 I_{2}-\left(\frac{1}{7}\right) V_{3}+\left(\frac{1}{7}\right) V_{4} \\
& \dot{V}_{4}=\left(\frac{1}{35}\right) V_{3}-\left(\frac{1}{35}\right) V_{4}
\end{aligned}
$$

Place in matrix form

$$
\begin{aligned}
& s\left[\begin{array}{l}
I_{1} \\
I_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-50 & 0 & -5 & 0 \\
0 & -80 & 4 & 0 \\
10 & -10 & \left(\frac{-1}{7}\right) & \left(\frac{1}{7}\right) \\
0 & 0 & \left(\frac{1}{35}\right) & \left(\frac{-1}{35}\right)
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
V_{3} \\
V_{4}
\end{array}\right]+\left[\begin{array}{l}
5 \\
0 \\
0 \\
0
\end{array}\right] V_{\text {in }} \\
& Y=\left[\begin{array}{lll}
0 & 0 & \left(\frac{4}{7}\right) \\
\hline
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
V_{3} \\
V_{4}
\end{array}\right]
\end{aligned}
$$

Problem 3: Root Locus

3) Gain Compensation: The root locus for

$$
G(s)=\left(\frac{40}{(s+1)(s+4)(s+5)(s+6)}\right)
$$

is shown below. Determine the following:

Maximum gain, k , for a stable closed-loop system	$\mathbf{K}=\mathbf{2 0 . 3 0 2 7}$ $\mathrm{s}=\mathrm{j} 3.4821$
k for a damping ratio of 0.6	$\mathbf{K}=\mathbf{2 . 9 2 9 0}$
Closed-loop dominant pole(s) for a damping ratio of 0.6	$\mathbf{S = \mathbf { - 1 . 3 2 2 4 } \mathbf { + j 1 . 7 6 3 3 }}$
Closed-Loop DC gain for a damping ratio of 0.6	DC Gain $=\mathbf{0 . 4 9 4 0}$ $\mathrm{Kp}=(2.9290)(0.3333)=0.9763$ $\mathrm{Kp} /(1+\mathrm{Kp})=0.4940$

Problem \#4: Compensator Design using Root Locus

4) Given the following stable system

$$
G(s)=\left(\frac{100}{(s+0.5)(s+2)(s+6)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- No error for a step input, and
- A closed-loop dominant pole at $\mathrm{s}=-2+\mathrm{j} 5$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.5)(s+2)}{s(s+a)}\right) \\
& G K=\left(\frac{100 k}{s(s+6)(s+a)}\right)
\end{aligned}
$$

Evaluate what we know at $\mathrm{s}=-2+\mathrm{j} 5$

$$
\begin{aligned}
& \left(\frac{100}{s(s+6)}\right)_{s=-2+j 5}=2.9001 \angle-163.1416^{0} \\
& \angle(s+a)=16.8584^{0} \\
& a=2+\frac{5}{\tan \left(166584^{0}\right)}=18.6 \\
& G K=\left(\frac{100 k}{s(s+6)(s+18.5)}\right)
\end{aligned}
$$

Evaluate what we know

$$
\begin{aligned}
& G K=\left(\frac{100}{s(s+6)(s+18.5)}\right)_{s=-2+j 5}=0.1682 \angle 180^{0} \\
& k=\frac{1}{0.1682}=5.945
\end{aligned}
$$

so

$$
K(s)=\left(\frac{5.945(s+0.5)(s+2)}{s(s+18.5)}\right)
$$

Problem \#5: Discrete-Time Compensator Design

5) Given the following stable system

$$
G(s)=\left(\frac{100}{(s+0.5)(s+2)(s+6)}\right)
$$

Determine a digital compensator, $\mathrm{K}(\mathrm{z})$, which results in the closed-loop system having

- No error for a step input,
- A closed-loop dominant pole at $\mathrm{s}=-2+\mathrm{j} 5$, and
- A sampling rate of $\mathrm{T}=0.2$

Let

$$
K(s)=k\left(\frac{(s+0.5)(s+2)}{s(s+a)}\right)
$$

or in the z-plane

$$
K(z)=k\left(\frac{(z-0.9048)(z-0.3679)}{(z-1)(z-a)}\right)
$$

$\mathrm{G}(\mathrm{s}) * \mathrm{~K}(\mathrm{z}) *$ zero order hold is (modeled as a $1 / 2$ sample delay)

$$
G K \Delta=\left(\frac{100}{(s+0.5)(s+2)(s+6)}\right) \cdot k\left(\frac{(z-0.9048)(z-0.3679)}{(z-1)(z-a)}\right) \cdot e^{-0.1 s}
$$

Evaluate what we know at

$$
\begin{aligned}
& \cdot \mathrm{s}=-2+\mathrm{j} 5 \\
& \cdot z=e^{s T}=0.3622+j 0.5641 \\
& \left(\frac{100}{(s+0.5)(s+2)(s+6)}\right)_{s=-2+j 5} \cdot\left(\frac{(z-0.9048)(z-0.3679)}{(z-1)}\right)_{z=0.3622+j 0.5641} \cdot\left(e^{-0.1 s}\right)_{s=-2+j 5}=0.8433 \angle 54^{0}
\end{aligned}
$$

Too much phase. Try

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.5)(s+2)(s+6))}{s(s+a)^{2}}\right) \\
& K(z)=k\left(\frac{(z-0.9048)(z-0.3679)(s-0.3012)}{(z-1)(z-a)^{2}}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left(G(s) \cdot K(z) \cdot e^{-s T / 2}\right)_{s=-2+j 5}=0.2150 \angle-106.897^{0} \\
& \angle(z-a)^{2}=73.1026^{0} \\
& \angle(z-a)=36.5513^{0} \\
& a=0.3622-\frac{0.5641}{\tan \left(36551 z^{0}\right)}=-0.398 i^{\circ}
\end{aligned}
$$

and

$$
K(z)=k\left(\frac{(z-0.9048)(z-0.3679)(s-0.3012)}{(z-1)(z+0.3977)^{2}}\right)
$$

Evaluate what we know

$$
\left(G(s) \cdot K(z) \cdot e^{-s T / 2}\right)_{s=-2+j 5}=0.2401 \angle 180^{0}
$$

$$
k=\frac{1}{0.2410}=4.1655
$$

and

$$
K(z)=4.1655\left(\frac{(z-0.9048)(z-0.3679)(s-0.3012)}{(z-1)(z+0.3977)^{2}}\right)
$$

Problem \#6: Compensator Design using Bode Plots

6) Given the following stable system

$$
G(s)=\left(\frac{100}{(s+0.5)(s+2)(s+6)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- A closed-loop DC gain of 1.000 (i.e. no error for a step input),
- A 0 dB gain frequency of $5 \mathrm{rad} / \mathrm{sec}$, and
- $\mathrm{Mm}=1.45$

Convert Mm to a phase margin

$$
\begin{aligned}
& \frac{1}{M_{m}^{2}}=2+2 \cos \phi \\
& \phi=-139.6575^{\circ}
\end{aligned}
$$

Pick K(s) so that

$$
G(j 5) K(j 5)=1 \angle-139.6575^{0}
$$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.5)(s+2)}{s(s+a)}\right) \\
& G K=\left(\frac{100 k}{s(s+6)(s+a)}\right)
\end{aligned}
$$

Evaluating what we know at $5 \mathrm{rad} / \mathrm{sec}$

$$
\left(\frac{100}{s(s+6)}\right)_{s=j 5}=0.2561 \angle-129.8056^{0}
$$

To make the phase add up to - 139.6575 degrees

$$
\begin{aligned}
& \angle(s+a)=9.8519^{0} \\
& a=\frac{5}{\tan \left(9.8619^{0}\right)}=28.7913
\end{aligned}
$$

and

$$
G K=\left(\frac{100 k}{s(s+6)(s+28.7913)}\right)
$$

Evaluate what we know

$$
\left(\frac{100}{s(s+6)(s+28.7913)}\right)_{s=j 5}=0.0876 \angle-139.6575^{0}
$$

meaning

$$
k=\frac{1}{0.0876}=11.4116
$$

and

$$
K(s)=11.4116\left(\frac{(s+0.5)(s+2)}{s(s+28.7913}\right)
$$

Problem \#8: Implementation

7) Determine R and C so that the following compensator has the transfer function of

$$
K(s)=300\left(\frac{(s+2)(s+9)}{s(s+15)}\right)
$$

Rewrite as

$$
K(s)=\left(\frac{10(s+2)}{s}\right)\left(30\left(\frac{s+9}{s+15}\right)\right)
$$

There are other solutions.

