
ECE 461 - Final:  Name ___________________
Fall - 2020

Problem #1: 2nd Order Approximations

1a)  Give the transfer function for a system with the following step response:

DC gain = 11.2

Frequency of oscillation = 
3 cycles

0.82s


 2π = 22.98rad

sec

2% settling time = 1.3 seconds

σ = 4

1.3
= 3.07

G(s) ≈ 


6,020

(s+3.07+j22.98)(s+3.7−j22.98)



1b)  What is the step response for the following system:

Y = 


2000

(s+7+j12)(s+7−j12)(s+40)

X

DC Gain 2% Settling Time % Overshoot

0.2591 4/7 sec 16.0%

θ = arctan 
12

7

 = 59.740

ζ = cos θ = 0.5039

OS = exp





−πζ

1−ζ2




 = 16.0%



Problem 2: Modeling and State Space

2a)  Write the differential equations which describe the following circuit (i.e. write the N

differential equations which correspond to the voltage node equations)

Vin

Y

10
0.2H

0.25H

I1

I2

V3

V4

20

30

40

0.1F

0.5F

V1 = 0.2I

.

1 = V in − 10I1 − V3

V2 = 0.25I

.

2 = V3 − 20I2

I3 = 0.1V

.

3 = I1 − I2 − 

V3−V4

70




I4 = 0.5V

.

4 = 

V3−V4

70




Output



Y−V3

30


 + 

Y−V4

40


 = 0

Y = 

4

7


 V3 + 

3

7


 V4

2b)  Express these dynamics in state-space form

Group terms

I

.

1 = 5V in − 50I1 − 5V3

I

.

2 = 4V3 − 80I2

V

.

3 = 10I1 − 10I2 − 

1

7


 V3 + 


1

7


 V4

V

.

4 = 


1

35


 V3 − 


1

35


 V4



Place in matrix form

s













I1

I2

V3

V4













=


















−50 0 −5 0

0 −80 4 0

10 −10 


−1

7






1

7



0 0 


1

35





−1

35
































I1

I2

V3

V4













+













5

0

0

0












Vin

Y = 

 0 0 


4

7





3

7


















I1

I2

V3

V4















Problem 3: Root Locus

3) Gain Compensation:  The root locus for

G(s) = 


40

(s+1)(s+4)(s+5)(s+6)



is shown below.  Determine the following:

Maximum gain, k, for a stable

closed-loop system k = 20.3027
s = j3.4821

k for a damping ratio of 0.6 k = 2.9290
Closed-loop dominant pole(s)

for a damping ratio of 0.6 s = -1.3224 + j1.7633

Closed-Loop DC gain

for a damping ratio of 0.6 DC Gain = 0.4940
Kp = (2.9290)(0.3333) = 0.9763

Kp / (1 + Kp) = 0.4940

  



Problem #4: Compensator Design using Root Locus

4)  Given the following stable system

G(s) = 


100

(s+0.5)(s+2)(s+6)



Determine a compensator, K(s), which results in the closed-loop system having

 No error for a step input, and

 A closed-loop dominant pole at s = -2 + j5

Let

K(s) = k
(s+0.5)(s+2)

s(s+a)



GK = 


100k

s(s+6)(s+a)



Evaluate what we know at s = -2 + j5




100

s(s+6)



s=−2+j5

= 2.9001∠ − 163.14160

∠(s + a) = 16.85840

a = 2 + 5

tan 16.85840 


= 18.5

GK = 


100k

s(s+6)(s+18.5)



Evaluate what we know

GK = 


100

s(s+6)(s+18.5)



s=−2+j5

= 0.1682∠1800

k = 1

0.1682
= 5.945

so

K(s) = 


5.945(s+0.5)(s+2)

s(s+18.5)





Problem #5: Discrete-Time Compensator Design

5)  Given the following stable system

G(s) = 


100

(s+0.5)(s+2)(s+6)



Determine a digital compensator, K(z), which results in the closed-loop system having

 No error for a step input,

 A closed-loop dominant pole at s = -2 + j5, and

 A sampling rate of T = 0.2

Let

K(s) = k
(s+0.5)(s+2)

s(s+a)



or in the z-plane

K(z) = k
(z−0.9048)(z−0.3679)

(z−1)(z−a)



G(s) * K(z) * zero order hold is (modeled as a 1/2 sample delay)

GK∆ = 


100

(s+0.5)(s+2)(s+6)

 ⋅ k

(z−0.9048)(z−0.3679)

(z−1)(z−a)

 ⋅ e−0.1s

Evaluate what we know at

 s = -2 + j5

 z = esT = 0.3622 + j0.5641




100

(s+0.5)(s+2)(s+6)



s=−2+j5

⋅ 
(z−0.9048)(z−0.3679)

(z−1)



z=0.3622+j0.5641

⋅ (e−0.1s)s=−2+j5
= 0.8433∠540

Too much phase.  Try

K(s) = k
(s+0.5)(s+2)(s+6))

s(s+a)2




K(z) = k
(z−0.9048)(z−0.3679)(s−0.3012)

(z−1)(z−a)2




Now

(G(s) ⋅ K(z) ⋅ e−sT/2)s=−2+j5
= 0.2150∠ − 106.8970

∠(z − a)2 = 73.10260

∠(z − a) = 36.55130

a = 0.3622 − 0.5641

tan 36.55130 


= −0.3987

and

K(z) = k
(z−0.9048)(z−0.3679)(s−0.3012)

(z−1)(z+0.3977)2




Evaluate what we know

(G(s) ⋅ K(z) ⋅ e−sT/2)s=−2+j5
= 0.2401∠1800



k = 1

0.2410
= 4.1655

and

K(z) = 4.1655
(z−0.9048)(z−0.3679)(s−0.3012)

(z−1)(z+0.3977)2






Problem #6: Compensator Design using Bode Plots

6)  Given the following stable system

G(s) = 


100

(s+0.5)(s+2)(s+6)



Determine a compensator, K(s), which results in the closed-loop system having

 A closed-loop DC gain of 1.000 (i.e. no error for a step input),

 A 0dB gain frequency of 5 rad/sec, and

 Mm = 1.45

Convert Mm to a phase margin

1

Mm
2

= 2 + 2 cos φ

φ = −139.65750

Pick K(s) so that

G(j5)K(j5) = 1∠ − 139.65750

Let

K(s) = k
(s+0.5)(s+2)

s(s+a)



GK = 


100k

s(s+6)(s+a)



Evaluating what we know at 5 rad/sec




100

s(s+6)



s=j5

= 0.2561∠ − 129.80560

To make the phase add up to -139.6575 degrees

∠(s + a) = 9.85190

a = 5

tan 9.86190 


= 28.7913

and

GK = 


100k

s(s+6)(s+28.7913)



Evaluate what we know




100

s(s+6)(s+28.7913)



s=j5

= 0.0876∠ − 139.65750

meaning

k = 1

0.0876
= 11.4116

and

K(s) = 11.4116
(s+0.5)(s+2)

s(s+28.7913





Problem #8:  Implementation

7)  Determine R and C so that the following compensator has the transfer function of

K(s) = 300
(s+2)(s+9)

s(s+15)



Rewrite as

K(s) = 


10(s+2)
s




30

s+9

s+15





1M

100k

0.5uF

1M

33.3k 22.2k

5uF

There are other solutions.


