ECE 461 / 661 Homework \#3

Structured Text,LaPlace Transforms, 1st and 2nd Order Approximations
Due Monday, September 14th

PLC Structured Text

- Will accept problems 1-3 any time before December 1st (so you can use the Micro810 PLC's)

Option \#1: If using Allen Bradley PLC's write a structured text program (i.e. a Pascal program) to implement the automated watering system of homework \#2.

Option \#2: Write a C program (for an Arduino, PIC processor, Rasberry PI) to implement the automated watering system of homework \#2

A soil moisture sensor measures the ground moisture

- $0 \mathrm{~V}=$ dry
- $10 \mathrm{~V}=$ wet

Start the watering process if

- You press button \#0, or
- The moisture sensor reads less than 4.00 V for more than 10 seconds,

When watering starts

- Relay \#0 turns on for 5 seconds
- One second later, Relay \#1 turns on for 5 seconds,
- One second later, Relay \#2 turns on for 5 seconds.

1) Write a strtuctured test program to implement the same program
2) Test your program (collect data on its timing)
3) Demo your program (in person or with a video)

LaPlace Transforms

4) Assume Y and X are related by

$$
Y=\left(\frac{10(s+2)}{(s+1)(s+7)}\right) X
$$

a) What is the differential equation relating X and Y ?
b) Find $y(t)$ assuming

$$
x(t)=2+3 \sin (4 t)
$$

c) Find $y(t)$ assuming

$$
x(t)=2 u(t)
$$

1st and 2nd Order Approximations:

5) Determine the transfer function for a system with the following step response
6) Determine the transfer function for a system with the following step response

Problem 2 (blue - no oscillations) \& Problem 3 (red - oscillations)
7) Find a 2nd-order approximation for $\mathrm{G}(\mathrm{s})$. Plot the step response of both $\mathrm{G}(\mathrm{s})$ and its second order approximation

- $G(s)=\left(\frac{2000}{(s+0.5)(s+2)(s+5)(s+10)}\right)$
- $G(s)=\left(\frac{200,000}{(s+2+j 10)(s+2-j 10)(s+8+j 20)(s+8-j 20)}\right)$

