ECE 461/661 - Test \#2: Name

Feedback and Root Locus - Fall 2020

1) Determine the system with the following step response

DC gain $=2.75$
$\mathrm{Ts}=700 \mathrm{~ms}$

$$
\begin{array}{r}
\sigma=\frac{4}{700 \mathrm{~ms}}=5.71 \\
\omega=\left(\frac{5 \text { cycles }}{520 \mathrm{~ms}}\right) 2 \pi=60.4
\end{array}
$$

$$
G(s) \approx\left(\frac{10,122}{(s+5.71+j 60.4)(s+5.71-j 60.4)}\right)
$$

2) The root locus of $\mathrm{G}(\mathrm{s})$ is shown below.

$$
G(s)=\left(\frac{100(s+4+j 5)(s+4-j 5)}{s(s+3)(s+6)(s+9)}\right)
$$

Determine the following

- Approach angle to the zero at $-4+\mathrm{j} 5$
- The breakaway point (approx)
- The gain, k , at the breakaway point, and
- The asymptotes (number, angle, intercept)
73.618 deg
-1.305, -7.671
0.025, 0.021

2 asymptotes
+/- 90 degrees
intercept $\mathbf{s}=\mathbf{- 5}$

3) Design a gain compensator $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ so that the feedback system has 10% overshoot for a step input.

Also determine

- The resulting error constant, Kp,

- The closed-loop dominant pole, and
- The step response of the closed-loop system (Matlab plot OK for this)

Assume

$$
G(s)=\left(\frac{100}{(s+1)(s+3)(s+6)(s+9)}\right)
$$

For 10% overshoot,

- the damping ratio is 0.591
- The angle of $s=53.781$ degrees

zeta $=$	0.591
$s=$	$-1.305+j 1.782$
$k=$	1.764
$K p=$	1.089

4) Design a compensator, $K(s)$, so that the closed-loop system has

- No error for a step input
- A 2% settling time of 3 seconds
- 10% overshoot for a step input.

$$
G(s)=\left(\frac{100}{(s+1)(s+3)(s+6)(s+9)}\right)
$$

Plot the step response of the resulting closed-loop system

$$
\begin{aligned}
& s=-1.333+j 1.820 \\
& K(s)=k\left(\frac{(s+1)(s+3)}{s(s+a)}\right) \\
& G K=\left(\frac{100 k}{s(s+a)(s+6)(s+9)}\right)
\end{aligned}
$$

evaluating what we know

$$
\begin{aligned}
& \left(\frac{100}{s(s+6)(s+9)}\right)_{s=-1.333+j 1.820}=1.123 \angle-160.878^{0} \\
& \angle(s+a)=19.122^{0} \\
& a=\frac{1.820}{\tan \left(19.122^{0}\right)}+1.333=6.582 \\
& \left(\frac{100}{s(s+6.582)(s+6)(s+9)}\right)_{s=-1.333+j 1.820}=0.202 \angle 180^{0} \\
& k=\frac{1}{0.202}=4.974 \\
& K(s)=4.974\left(\frac{(s+1)(s+3)}{s(s+6.582)}\right)
\end{aligned}
$$

5) Design a circuit to implement $K(s)$

$$
K(s)=\left(\frac{200(s+3)(s+5)}{s(s+14)}\right)
$$

Rewrite as

$$
K(s)=\left(\frac{20(s+5)}{(s+14)}\right)\left(\frac{10(s+3)}{s}\right)
$$

There are many answers - this is one solution

