ECE 461/661-Test \#3: Name

Digital Control \& Frequemncy Domain techniques - Fall 2020

Root Locus in the z-Plane

1) Assume a unity feedback system

$$
G(z)=\left(\frac{0.04 z}{(z-0.9)(z-0.8)}\right)
$$

Determine a gain compesator, $\mathrm{K}(\mathrm{z})=\mathrm{k}$, which results in
 10% overshoot for a step input $(\zeta=0.5910)$. Specify

- The resulting gain, k
- The closed-loop dominant pole(s)
- The resulting 2% settling time (in terms of samples), and
- The error constant, Kp

Step 1: Draw the root locus plot along with the 0.5910 damping line in the z-plane:

```
G = zpk(0,[0.9,0.8],0.04);
k = logspace(-2,2,1000)';
rlocus(G,k);
hold on
s = (-1 + j*1.36492) * [0:0.01:10]';
T = 1;
z = exp(s*T);
plot(real(z),imag(z),'r');
```


Find the point which intersects the damping line:

$$
z=0.8273+j 0.1886
$$

At any point on the root locus, GK $=-1$

$$
\left(\frac{0.04 z}{(z-0.9)(z-0.8)}\right)_{z=0.8273+j 0.1886}=0.8812 \angle 180^{0}
$$

meaning

$$
k=\frac{1}{0.8812}=1.1349
$$

Answers:

Resulting Gain, k:

$$
k=1.1349
$$

Closed-Loop Dominant Poles:

$$
z=0.8273+j 0.1886 \text { (and its complex conjugate) }
$$

2\% Settling Time:

24 samples

$$
z=0.8485 \angle 12.845^{0}
$$

$$
(0.8485)^{k}=0.02
$$

$$
k=23.81
$$

$\mathbf{K p}=\mathbf{0 . 2 2 7 0}$
$\left(\frac{0.04 z}{(z-0.9)(z-0.8)}\right)_{z=1}=2.00$
$K_{p}=(G \cdot k)_{s=0}=2 k=2.2697$

Compensator Design in the z-Plane

2) Assume a unity feedback system with a sampling rate of $\mathrm{T}=0.1$ second

$$
G(s)=\left(\frac{10}{(s+2)(s+10)}\right)
$$

Design a digital compensator, $\mathrm{K}(\mathrm{z})$, which results in

- No error for a step input
- 10% overshoot $(\zeta=0.5910)$, and
- A 2% settling time of 2 seconds

The closed-loop dominant pole is

- $s=-2+j 2.7299$
- $z=0.7884+j 0.2207$

Pick K(z) to

- Cancel the poles at $\mathrm{s}=-2$ and $\mathrm{s}=-10$
- Add a pole at $\mathrm{s}=0$, and
- Add a pole to place these points on the root locus (angle adds up to 180 degrees)

$$
K(z)=k\left(\frac{(z-0.8187)(z-0.3679)}{(z-1)(z-a)}\right)
$$

To find 'a', evaluate what we know

$$
\begin{aligned}
& G(s) \cdot K(z) \cdot Z O H=-1 \\
& \left(\left(\frac{10}{(s+2)(s+10)}\right)\left(\frac{(z-0.8187)(z-0.3679)}{(z-1)(z-a)}\right)\left(e^{-s T / 2}\right)\right)_{s=-2+j 2.7299}=0.1657 \angle-124.94^{0} \\
& \angle(z-a)=55.0596^{0} \\
& a=0.7884-\frac{0.2207}{\tan \left(55.0596^{0}\right)}=0.6342
\end{aligned}
$$

meaning

$$
K(z)=k\left(\frac{(z-0.8187)(z-0.3679)}{(z-1)(z-0.6342)}\right)
$$

To find k

$$
\begin{aligned}
& \left(\left(\frac{10}{(s+2)(s+10)}\right)\left(\frac{(z-0.8187)(z-0.3679)}{(z-1)(z-a)}\right)\left(e^{-s T / 2}\right)\right)_{s=-2+j 2.7299}=0.6155 \angle 180^{0} \\
& k=\frac{1}{0.6155}=1.6246 \\
& K(z)=1.6246\left(\frac{(z-0.8187)(z-0.3679)}{(z-1)(z-0.6342)}\right)
\end{aligned}
$$

Nichols Charts

3) Assume a unity feedback system with

$$
G(s)=\left(\frac{10}{s(s+2)(s+10)}\right)
$$

Determine a gain compensator, $\mathrm{K}(\mathrm{s})=\mathrm{k}$, which results in a resonance of $\mathrm{Mm}=1.3(2.279 \mathrm{~dB})$.

Plot the resulting Nichols chart for the $\mathrm{G}(\mathrm{s}) * \mathrm{k}$


```
>>G=zpk([],[0,-2,-10],10);
>> w = logspace(-2,2,1000)';
>> s = j*W;
>> GW = Bode2(G,w);
>> Nichols2(G2,1.3);
??? Undefined function or variable 'G2'.
>> Nichols2(Gw,1.3);
>> Nichols2(Gw* [1,3],1.3);
>> Nichols2(Gw*[1,4],1.3);
>> Nichols2(Gw*[1,3.6],1.3);
>> Nichols2(GW*[1,3.7],1.3);
>>
answer: k=3.70
```


Compensator Design in the Frequency Domain

4) Assume a unity feedback system with

$$
G(s)=\left(\frac{10}{s(s+2)(s+10)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in

- No error for a step input (closed-loop gain at DC $=1.000$)
- A 60 degree phase margin, and
- A 0 dB gain frequency of $2 \mathrm{rad} / \mathrm{sec}$

Assume $\mathrm{K}(\mathrm{s})$ is in the form of

$$
K(s)=k\left(\frac{s+2}{s+a}\right)
$$

For a 60 degree phase margin at $2 \mathrm{rad} / \mathrm{sec}$

$$
G K(j 2)=\left(\left(\frac{10}{s(s+2)(s+10)}\right)\left(\frac{k(s+2)}{s+a}\right)\right)_{s=j 2}=1 \angle-120^{0}
$$

Evaluating what we know

$$
\left(\left(\frac{10}{s(s+2)(s+10)}\right)\left(\frac{s+2}{1}\right)\right)_{s=j 2}=0.4903 \angle-101.3099^{0}
$$

For the phase to add up to - 120 degrees

$$
\begin{aligned}
& \angle(s+a)=18.6901^{0} \\
& a=\frac{2}{\tan (1869010)}=5.9121
\end{aligned}
$$

Going back to GK

$$
\left(\left(\frac{10}{s(s+2)(s+10)}\right)\left(\frac{s+2}{s+5.9121}\right)\right)_{s=j 2}=0.0786 \angle-120^{0}
$$

meaning

$$
k=\frac{1}{0.0786}=12.7297
$$

and

$$
K(s)=12.7297\left(\frac{s+2}{s+5.9121}\right)
$$

Other answers work:

- $\mathrm{G}(\mathrm{j} 0.9214)=0.4909 \angle-120^{0}$
- The zero can be $1 . .3 \times 0.9214 \mathrm{rad} / \mathrm{sec}$

