ECE 461 / 661 Homework \#3

Structured Text,LaPlace Transforms, 1st and 2nd Order Approximations
Due Monday, September 14th

PLC Structured Text

- Will accept problems 1-3 any time before December 1st (so you can use the Micro810 PLC's)

Option \#1: If using Allen Bradley PLC's write a structured text program (i.e. a Pascal program) to implement the automated watering system of homework \#2.

Option \#2: Write a C program (for an Arduino, PIC processor, Rasberry PI) to implement the automated watering system of homework \#2

A soil moisture sensor measures the ground moisture

- $0 \mathrm{~V}=$ dry
- $10 \mathrm{~V}=$ wet

Start the watering process if

- You press button \#0, or
- The moisture sensor reads less than 4.00 V for more than 10 seconds,

When watering starts

- Relay \#0 turns on for 5 seconds
- One second later, Relay \#1 turns on for 5 seconds,
- One second later, Relay \#2 turns on for 5 seconds.

1) Write a strtuctured test program to implement the same program
2) Test your program (collect data on its timing)
3) Demo your program (in person or with a video)

LaPlace Transforms

4) Assume Y and X are related by

$$
Y=\left(\frac{10(s+2)}{(s+1)(s+7)}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\begin{aligned}
& (s+1)(s+7) Y=10(s+2) X \\
& \left(s^{2}+8 s+7\right) Y=(10 s+20) X
\end{aligned}
$$

sY means dy/dt

$$
\begin{aligned}
& y^{\prime \prime}+8 y^{\prime}+7 y=10 x^{\prime}+20 x \\
& \frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}+7 y=10 \frac{d x}{d t}+20 x
\end{aligned}
$$

b) Find $y(t)$ assuming

$$
x(t)=2+3 \sin (4 t)
$$

Use phasors and superposition
DC: $\mathrm{x}(\mathrm{t})=2$

$$
\begin{aligned}
& X=2 \\
& s=0 \\
& Y=\left(\frac{10(s+2)}{(s+1)(s+7)}\right)_{s=0}(2+j 0) \\
& Y=5.714
\end{aligned}
$$

meaning $y(t)=5.714$

AC: $x(t)=3 \sin (4 t)$

$$
\begin{aligned}
& X=0-j 3 \\
& s=j 4 \\
& Y=\left(\frac{10(s+2)}{(s+1)(s+7)}\right)_{s=j 4}(0-j 3) \\
& Y=-2.715-j 2.986
\end{aligned}
$$

meaning $\mathrm{y}(\mathrm{t})=-2.715 \cos (4 \mathrm{t})+2.986 \sin (4 \mathrm{t})$. The total Answer: $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=5.714-2.715 \cos (4 t)+2.986 \sin (4 t)
$$

c) Find $y(t)$ assuming

$$
x(t)=2 u(t)
$$

Use LaPlace transforms

$$
\begin{aligned}
& X(s)=\left(\frac{2}{s}\right) \\
& Y=\left(\frac{10(s+2)}{(s+1)(s+7)}\right)\left(\frac{2}{s}\right)
\end{aligned}
$$

using partial fractions

$$
Y=\left(\frac{5.714}{s}\right)+\left(\frac{-3.333}{s+1}\right)+\left(\frac{-2.831}{s+7}\right)
$$

taking the inverse LaPlace transform

$$
y(t)=\left(5.714-3.333 e^{-t}-2.831 e^{-7 t}\right) u(t)
$$

1st and 2nd Order Approximations:

5) Determine the transfer function for a system with the following step response (blue)

Problem 2 (blue - no oscillations) \& Problem 3 (red - oscillations)

This is a 1st-order system (no oscillations).

$$
Y=\left(\frac{a}{s+b}\right) X
$$

To find the transfr function, we need two measurements.

DC gain $=1.40$

$$
\left(\frac{a}{b}\right)=1.4
$$

2% settling time $=2.5$ seconds (approx)

$$
b=\frac{4}{2.5}=1.60
$$

meaning

$$
G(s)=\left(\frac{a}{s+1.6}\right)=\left(\frac{2.24}{s+1.6}\right)
$$

Pick 'a' to make the DC gain equal to 1.40
6) Determine the transfer function for a system with the following step response (red)

This is a 2nd-order system (it has oscillations)

$$
G(s)=\left(\frac{k}{(s+\sigma+j \omega)(s+\sigma-j \omega)}\right)
$$

The 2% settlimg time is 3 seconds (approx)

$$
\sigma=\frac{4}{3}=1.333
$$

The period is 1.7 seconds

$$
\begin{aligned}
& f=\frac{1}{T}=\frac{1}{1.7}=0.75 \mathrm{~Hz} \\
& \omega=2 \pi f=4.71
\end{aligned}
$$

meaning

$$
G(s)=\left(\frac{k}{(s+1.333+j 4.71)(s+1.333-j 4.71)}\right)
$$

The DC gain is 1.6. Pick ' k ' to make the DC gain 1.60

$$
G(s)=\left(\frac{38.34}{(s+1.333+j 4.71)(s+1.333-j 4.71)}\right)
$$

7) Find a 2nd-order approximation for $\mathrm{G}(\mathrm{s})$. Plot the step response of both $\mathrm{G}(\mathrm{s})$ and its second order approximation
a) $\quad G(s)=\left(\frac{2000}{(s+0.5)(s+2)(s+5)(s+10)}\right)$

$$
G(s) \approx\left(\frac{k}{(s+0.5)(s+2)}\right)
$$

Pick ' k ' so that the DC gain is the same

$$
\begin{aligned}
& \left(\frac{2000}{(s+0.5)(s+2)(s+5)(s+10)}\right)_{s=0}=40 \\
& \left(\frac{k}{(s+0.5)(s+2)}\right)_{s=0}=40 \\
& k=40 \\
& G(s) \approx\left(\frac{40}{(s+0.5)(s+2)}\right)
\end{aligned}
$$

Checking in Matlab

```
>> G4 = zpk([],[-0.5,-2,-5,-10],2000);
>> G2 = zpk([],[-0.5,-2],40);
>> t = [0:0.01:20]';
>> y2 = step(G2,t);
>> y4 = step(G4,t);
>> plot(t,y2,'b',t,y4,'r');
```


7b) $\quad G(s)=\left(\frac{200,000}{(s+2+j 10)(s+2-j 10)(s+8+j 20)(s+8-j 20)}\right)$

$$
G(s) \approx\left(\frac{k}{(s+2+j 10)(s+2-j 10)}\right)
$$

Pick ' k ' to match the DC gain

$$
\begin{aligned}
&\left(\frac{200,000}{(s+2+j 10)(s+2-j 10)(s+8+j 20)(s+8-j 20)}\right)_{s=0}=4.145 \\
&\left(\frac{k}{(s+2+j 10)(s+2-j 10)}\right)_{s=0}=4.145 \\
&(=431.03 \\
& G(s) \approx\left(\frac{431.03}{(s+2+j 10)(s+2-j 10)}\right) \\
& \gg G 4=z p k([],[-2+j \star 10,-2-j \star 10,-8+j * 20,-8-j * 20], 200000) ; \\
& \gg G 2=\text { zpk([],[-2+j*10,-2-j*10],431.03);} \\
& \gg t=[0: 0.01: 4] ' ; \\
& \gg y 2=\operatorname{step}(G 2, t) ; \\
& \gg y 4=\operatorname{step}(G 4, t) ; \\
& \gg p l o t(t, y 2, ' b ', t, y 4, ' r ') ;
\end{aligned}
$$

