Homework \#7: ECE 461/661

Gain, Lead, PID Compensation. Due Monday, October 19st
The transfer function for a 10 -stage RC filter is

$$
G_{10}(s)=\left(\frac{9765625}{(s+19.61)(s+18.31)(s+16.28)(s+13.7)(s+10.8)(s+7.825)(s+5.05)(s+2.719)(s+1.04)(s+0.1617)}\right)
$$

A 4th-order model (ignore all poles 40x faster than the dominant pole) is

$$
G_{4}(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

Gain Compensation

1) For the 4 th-order model, design a gain compensator $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ which results in

- The fastest system possible,
- With no overshoot for a step input (i.e. design for the breakaway point)

Check your design in Matlab or Simulink or VisSim
Step 1: Plot the root locus and determine the breakaway point

Determine the design point (s at the breakaway point)

$$
s=-0.5335
$$

Pick k so that $\mathrm{GK}=-1$ at this point

$$
\begin{aligned}
& \left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=-0.533}=0.7761 \angle 180^{0} \\
& k=\frac{1}{0.7761}=1.2884
\end{aligned}
$$

The closed-loop dominant pole(s)

$$
s=-0.5335
$$

The 2% settling time,

$$
T_{s}=\frac{4}{0.5335}=7.2437 \mathrm{sec}
$$

The error constant, Kp , and

$$
\begin{aligned}
& K_{p}=(G K)_{s=0}=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=0}(1.2884) \\
& K_{p}=(0.6248)(1.2884) \\
& K_{p}=0.8050
\end{aligned}
$$

The steady-state error for a step input.

$$
\begin{aligned}
& E_{\text {step }}=\frac{1}{K_{p}+1} \\
& E_{\text {step }}=0.5540
\end{aligned}
$$

Checking the result in Matlab

```
>> G = zpk([],[-0.1617,-1.04,-2.719,-5.05],1.4427);
>> evalfr(G, -0.5335)
ans = -0.7761
>> k = 1 / abs(ans)
k = 1.2884
>> Gcl = minreal(G*k / (1+G*k));
>> zpk(Gcl)
```



```
(s+0.5335) (s+0.5399) (s+2.89) (s+5.008)
>> t = [0:0.01:15]';
>> y = step(Gcl, t);
>> plot(t,y);
```


2) Design a gain compensator $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ which results in 20% overshoot for a step input.
20% overshoot corresponds to a damping ratio of 0.4559
Draw the root locus and determine the point which intersects the damping line

$$
s=-0.3698+j 0.7397
$$

At this point

$$
\begin{aligned}
& \left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=-0.3698+j 0.7397}=0.1612 \angle 180^{0} \\
& k=\frac{1}{0.1612}=6.0240
\end{aligned}
$$

The closed-loop dominant pole(s)

$$
s=-0.3698+j 0.7397
$$

The 2% settling time,

$$
T_{s}=\frac{4}{0.3698}=10.8167 \mathrm{sec}
$$

The error constant, Kp, and

$$
\begin{aligned}
& K_{p}=(G K)_{s=0}=(0.6248)(6.0240) \\
& K_{p}=3.7638
\end{aligned}
$$

The steady-state error for a step input.

$$
E_{\text {step }}=\frac{1}{K_{p}+1}=0.1298
$$

Check your design in Matlab or Simulink or VisSim

```
>> G = zpk([],[-0.1617,-1.04,-2.719,-5.05],1.4427);
>> s = -0.3698 + j*0.7397;
>> evalfr(G,s)
ans = -0.1612 - 0.0000i
>> k = 1/abs(ans)
k= 6.2043
>> Gcl = minreal(G*k / (1+G*k));
>> eig(Gcl)
    -0.3698 + 0.7397i
    -0.3698 - 0.7397i
    -3.4266
    -4.8044
>> t = [0:0.01:15]';
>> y = step(Gcl, t);
>> plot(t,y);
>>
```


Lead Compensation

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

3) Design a lead compensator, $K(s)=k\left(\frac{s+a}{s+10 a}\right)$, which results in 20% overshoot for a step input.

Keep the pole at -0.1617 (keeps the steady state error small)
Cancel the pole at -1.04

$$
\begin{aligned}
& K(s)=k\left(\frac{s+1.04}{s+10.4}\right) \\
& G K=\left(\frac{1.4427 k}{(s+0.1617)(s+10.4)(s+2.719)(s+5.05)}\right)
\end{aligned}
$$

Sketch the root locus and find the point with a damping ratio of 0.4559

$$
s=-0.7829+j 1.5658
$$

To find k :

$$
\begin{aligned}
& \left(\frac{1.4427 k}{(s+0.1617)(s+10.4)(s+2.719)(s+5.05)}\right)_{s=-0.7829+j 1.5658}=0.0078 \angle 180^{0} \\
& k=\frac{1}{0.0078}=128.76 \\
& K(s)=128.76\left(\frac{s+1.04}{s+10.4}\right)
\end{aligned}
$$

The closed-loop dominant pole(s)

$$
s=-0.7829+j 1.5658
$$

The 2% settling time,

$$
T_{s}=\frac{4}{0.7829}=5.1092 \mathrm{sec}
$$

The error constant, Kp , and

$$
\begin{aligned}
& K_{p}=G(0) K(0) \\
& K_{p}=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=0}\left(128.76\left(\frac{s+1.04}{s+10.4}\right)\right)_{s=0} \\
& K_{p}=(0.6248)(12.876) \\
& K_{p}=8.045
\end{aligned}
$$

The steady-state error for a step input.

$$
E_{\text {step }}=\frac{1}{K_{p}+1}=0.1106
$$

Check your design in Matlab or Simulink or VisSim

```
>> GK = zpk([],[-0.1617,-10.4,-2.719,-5.05],1.4427);
>> s = -0.7829 + j*1.5658;
>> evalfr(GK,s)
ans = -0.0078 + 0.0000i
>> k = 1 / abs(ans)
k = 128.7637
>> Gcl = minreal(GK*k / (1+GK*k));
>> eig(Gcl)
    -0.7829 + 1.5658i
    -0.7829 - 1.5658i
    -6.9286
    -9.8363
>> t = [0:0.01:15]';
>> y = step(Gcl, t);
>> plot(t,y);
```


Give an op-amp circuit to implement K (s)

$$
K(s)=128.76\left(\frac{s+1.04}{s+10.4}\right)
$$

I Compensation

4) Design an I compensator, $K(s)=\frac{I}{s}$, which results in 20% overshoot for a step input.

$$
\begin{aligned}
& G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \\
& G K=\left(\frac{1.4427 k}{s(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
\end{aligned}
$$

Sketch the root locus along with the damping line

$$
s=-0.0630+j 0.1260
$$

At this point

$$
\begin{aligned}
& \left(\frac{1.4427 k}{s(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=-0.0630+j 0.1260}=4.8973 \angle 180^{0} \\
& k=\frac{1}{4.8973}=0.2042 \\
& K(s)=\left(\frac{0.2042}{s}\right)
\end{aligned}
$$

The closed-loop dominant pole(s)

$$
s=-0.0630+j 0.1260
$$

The 2% settling time,

$$
T_{s}=\frac{4}{0.0630}=63.49 \mathrm{sec}
$$

The error constant, Kp , and
Kp = infinity (type-1 system)

The steady-state error for a step input.

$$
\text { E(step) = } 0 \text { (type-1 system) }
$$

Check your design in Matlab or Simulink or VisSim

```
>> GK = zpk([],[0,-0.1617,-1.04,-2.719,-5.05],1.4427);
>> s = -0.0630 + j*0.1260;
>> evalfr(GK,s)
ans = -4.8968 + 0.0004i
>> k = 1 / abs(ans)
k = 0.2042
>> Gcl = minreal(GK*k / (1+GK*k));
>> zpk(Gcl)
                                    0.29462
(s+1.085) (s+2.708) (s+5.051) (s^2 + 0.126s + 0.01984)
>> eig(Gcl)
    -0.0630 + 0.1260i
    -0.0630 - 0.1260i
    -1.0854
    -2.7081
    -5.0513
>> t = [0:0.01:50]';
>> y = step(Gcl, t);
>> plot(t,y);
```


Give an op-amp circuit to implement K (s)

$$
K(s)=\left(\frac{0.2042}{s}\right)
$$

PI Compensation

5) Design a PI compensator, $K(s)=k\left(\frac{s+a}{s}\right)$, which results in 20% overshoot for a step input.

$$
\begin{aligned}
& G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \\
& K(s)=k\left(\frac{s+0.1617}{s}\right) \\
& G K=\left(\frac{1.4427 k}{s(s+1.04)(s+2.719)(s+5.05)}\right)
\end{aligned}
$$

Sketch the root locus along with the 0.4559 damping line

$$
\begin{aligned}
& s=-0.3159+j 0.6318 \\
& \left(\frac{1.4427 k}{s(s+1.04)(s+2.719)(s+5.05)}\right)_{s=-0.3159+j 0.6318}=0.1791 \angle 180^{0} \\
& k=\frac{1}{0.1791}=5.5836 \\
& K(s)=5.5836\left(\frac{s+0.1617}{s}\right)
\end{aligned}
$$

The closed-loop dominant pole(s)

$$
s=-0.3159+j 0.6318
$$

The 2% settling time,

$$
T_{s}=\frac{4}{0.3159}=12.67 \mathrm{sec}
$$

No error for a step input (type-1 system)

Check your design in Matlab or Simulink or VisSim

```
>> GK = zpk([],[0,-1.04,-2.719,-5.05],1.4427);
>> s = -0.3159 + j*0.6318;
>> evalfr(GK,s)
ans = -0.1791 + 0.0000i
>> k = 1 / abs(ans)
k= 5.5838
>> Gcl = minreal(GK*k / (1+GK*k));
>> eig(Gcl)
    -0.3159 + 0.6318i
    -0.3159 - 0.6318i
    -3.3329
    -4.8443
>> t = [0:0.01:20]';
>> y = step(Gcl, t);
>> plot(t,y);
>> grid on
>>
```


Give an op-amp circuit to implement K (s)

$$
K(s)=5.5836\left(\frac{s+0.1617}{s}\right)
$$

