Homework \#8: ECE 461/661

Meeting Specs, Delays, Unstable Systems. Due Monday, October 26th 20 points per problem

Meeting Design Specs

1) Assume

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 6 seconds, and
- 20% overshoot for the step response

Translation:

- Make it a type-1 system
- Place the closed-loop dominant pole at $\mathrm{s}=-0.667+\mathrm{j} 1.333$

Solution: Let

$$
K(s)=k\left(\frac{(s+0.1617)((s+1.04)}{s(s+a)}\right)
$$

resulting in

$$
G K=\left(\frac{1.4427 k}{s(s+a)(s+2.719)(s+5.05)}\right)
$$

Evaluate what you know at $\mathrm{s}=-1+\mathrm{j} 2$

$$
\left(\frac{1.4427}{s(s+2.719)(s+5.05)}\right)_{s=-0.667+j 1.333}=0.086 \angle-166.506^{0}
$$

To bring the phase to 180 degrees

$$
\angle(s+a)=13.494^{0}
$$

' a ' is then

$$
\begin{aligned}
& a=\frac{1.333}{\tan \left(12494^{0}\right)}+0.667 \\
& a=6.222
\end{aligned}
$$

giving

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.1617)(s+1.04)}{s(s+6.222)}\right) \\
& G K=\left(\frac{1.4427 k}{s(s+2.719)(s+5.05)(6.222)}\right)
\end{aligned}
$$

Evaluate at $\mathrm{s}=-0.667+\mathrm{j} 1.333$

$$
\left(\frac{1.4427 k}{s(s+2.719)(s+5.05)(6.222)}\right)_{s=-0.667+j 1.333}=0.015 \angle 180^{0}
$$

resulting in

$$
k=\frac{1}{0.015}=66.164
$$

and

$$
K(s)=66.164\left(\frac{(s+0.1617)(s+1.04)}{s(s+6.222)}\right)
$$

Check your design in Matlab or Simulink or VisSim

Give an op-amp circuit to implement K (s)

$$
K(s)=66.164\left(\frac{(s+0.1617)(s+1.04)}{s(s+6.222)}\right)
$$

Rewrite this as

$$
K(s)=\left(10\left(\frac{s+1.04}{s+6.222}\right)\right)\left(\frac{6.6164(s+0.1617)}{s}\right)
$$

Implement this as a PI * Lead
Lead: Let R1 $=100 \mathrm{k}$

- As s goes to infinity, $\mathrm{K}(\mathrm{s})=10 . \mathrm{R} 3=1 \mathrm{M}$
- As s goes to zero, the gain is $16.71=\mathrm{R} 3 /(\mathrm{R} 1+\mathrm{R} 2)$.
- $\mathrm{R} 2=498.3 \mathrm{k}$
- $1 /(\mathrm{R} 2 \mathrm{C})=1.04$
- $\mathrm{C}=1.987 \mathrm{uF}$

PI: Let R1 $=100 \mathrm{k}$

- As s goes to infinity, the gain is 6.6164 .
- $\mathrm{R} 2=661.64 \mathrm{k}$
- $1 /(\mathrm{R} 2 \mathrm{C})=0.1617$
- $\mathrm{C}=9.9347 \mathrm{uF}$

Systems with Delays

2) Assume a 100 ms delay is added to the system

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) e^{-0.1 s}
$$

Design a compensator, K(s), For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 6 seconds, and
- 20% overshoot for the step response

Let $\mathrm{K}(\mathrm{s})$ be

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.1617)((s+1.04)}{s(s+a)}\right) \\
& G K=\left(\frac{1.4427 k}{s(s+a)(s+2.719)(s+5.05)}\right) e^{-0.1 s}
\end{aligned}
$$

Evaluate what you know at $\mathrm{s}=-0.667+\mathrm{j} 1.333$

$$
\left(\left(\frac{1.4427}{s(s+2.719)(s+5.05)}\right) e^{-0.1 s}\right)_{s=-0.667+j 1.333}=0.092 \angle-174.144^{0}
$$

meaning

$$
\begin{aligned}
& \angle(s+a)=5.856^{0} \\
& a=\frac{1.333}{\tan \left(5856^{0}\right)}+0.667 \\
& a=13.664
\end{aligned}
$$

telling you

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.1617)((s+1.04)}{s(s+13.664)}\right) \\
& G K=\left(\frac{1.4427 k}{s(s+2.719)(s+5.05)(s+13.664)}\right) e^{-0.1 s}
\end{aligned}
$$

Evaluate at $\mathrm{s}=-0.667+\mathrm{j} 1.333$

$$
\begin{aligned}
& \left(\left(\frac{1.4427 k}{s(s+2.719)(s+5.05)(s+13.664)}\right) e^{-0.1 s}\right)_{s=-0.667+j 1.333}=0.007 \angle 180^{0} \\
& k=\frac{1}{0.007}=141.556 \\
& K(s)=141.556\left(\frac{(s+0.1617)((s+1.04)}{s(s+13.664)}\right)
\end{aligned}
$$

Check your design in Matlab or Simulink or VisSim

Give an op-amp circuit to implement K (s)

$$
\begin{aligned}
& K(s)=141.556\left(\frac{(s+0.1617)((s+1.04)}{s(s+13.664)}\right) \\
& K(s)=\left(10\left(\frac{s+1.04}{s+13.664}\right)\right)\left(\frac{14.1556(s+0.1617)}{s}\right)
\end{aligned}
$$

Unstable Systems

3) Assume the slow pole was unstable

$$
G(s)=\left(\frac{1.4427}{(s-0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 6 seconds, and
- 20% overshoot for the step response

Check your design in Matlab or Simulink or VisSim

Step 1: Stabilize the system

$$
K_{1}(s)=k\left(\frac{s+1.04}{s+10}\right)
$$

Place the closed-loop poles at $\mathrm{s}=-0.5$

$$
\begin{aligned}
& G K_{1}=\left(\frac{1.4427 k}{(s-0.1617)(s+2.719)(s+5.05)(s+10)}\right)_{s=-0.5}=-0.0227 k \\
& k=\frac{1}{0.0227}=43.9924
\end{aligned}
$$

and

$$
K_{1}(s)=43.9924\left(\frac{s+1.04}{s+10}\right)
$$

The closed-loop system is then (from Matlab)

```
>> G = zpk([],[0.1617,-1.04,-2.719,-5.05],1.4427);
>> K1 = zpk(-1.04,-10,43.9927);
>> G2 = minreal(G*K1 / (1+G*K1))
63.4683
(s+0.5) (s+1.435) (s+5.86) (s+9.812)
    G}=(\frac{G\mp@subsup{K}{1}{}}{1+G\mp@subsup{K}{1}{}})=(\frac{63.4683}{(s+0.5)(s+1.435)(s+5.86)(s+9.812)}
```

Now add a second feedback loop to meet the design specs

$$
\begin{aligned}
& K_{2}=k\left(\frac{(s+0.5)(s+1.435)}{s(s+a)}\right) \\
& G_{2} K_{2}=\left(\frac{63.4683 k}{s(s+a)(s+5.86)(s+9.812)}\right)
\end{aligned}
$$

Evaluate what you know at $\mathrm{s}=-0.667+\mathrm{j} 1.333$

$$
\left(\frac{63.4683}{s(s+5.86)(s+9.812)}\right)_{s=-0.667+j 1.333}=0.8729 \angle-139.2719^{0}
$$

meaning

$$
\begin{aligned}
& \angle(s+a)=40.7281^{0} \\
& a=\frac{1.333}{\tan \left(407281^{\circ}\right)}+0.667 \\
& a=2.2152
\end{aligned}
$$

meaning

$$
K_{2}=k\left(\frac{(s+0.5)(s+1.435)}{s(s+2.2152)}\right)
$$

$$
G_{2} K_{2}=\left(\frac{63.4683 k}{s(s+2.2152)(s+5.86)(s+9.812)}\right)_{s=-0.667+j 1.333}=0.4206 k \angle 180^{0}
$$

$$
k=\frac{1}{0.4206}=2.3773
$$

$$
K_{2}=2.3773\left(\frac{(s+0.5)(s+1.435)}{s(s+2.2152)}\right)
$$

