Homework \#9: ECE 461/661

z-Transforms, s to z conversion, Root Locus in the z-Domain. Due Monday, November 9th

z-Transforms

1) Determine the difference equation that relates X and Y

$$
Y=\left(\frac{0.005 z}{(z-0.95)(z-0.9)(z-0.5)}\right) X
$$

Cross multiply

$$
(z-0.95)(z-0.9)(z-0.5) Y=(0.005 z) X
$$

-->poly([0.95,0.9,0.5])

$$
\text { ans }=1 .-2.35 \quad 1.78-0.4275
$$

$$
\left(z^{3}-2.35 z^{2}+1.78 z-0.4275\right) Y=(0.005 z) X
$$

' zY ' means 'the next value of $\mathrm{y}(\mathrm{k})$ ' or ' $\mathrm{y}(\mathrm{k}+1)^{\prime}$

$$
y(k+3)-2.35 y(k+2)+1.78 y(k+1)-0.4275 y(k)=0.005 x(k+1)
$$

or using a change in variable

$$
\mathrm{y}(\mathrm{k})-2.35 \mathrm{y}(\mathrm{k}-1)+1.78 \mathrm{y}(\mathrm{k}-2)-0.4275 \mathrm{y}(\mathrm{k}-3)=0.005 \mathrm{x}(\mathrm{k}-2)
$$

Either answer is correct
2) Determine $y(k)$ assuming

$$
Y=\left(\frac{0.005 z}{(z-0.95)(z-0.9)(z-0.5)}\right) X \quad x(k)=u(k)
$$

Substitute the z-transform for $\mathrm{x}(\mathrm{k})$

$$
Y=\left(\frac{0.005 z}{(z-0.95)(z-0.9)(z-0.5)}\right)\left(\frac{z}{z-1}\right)
$$

Pull out a z (we'll need this later)

$$
Y=\left(\frac{0.005 z}{(z-1)(z-0.95)(z-0.9)(z-0.5)}\right) z
$$

Do partial fractions

$$
\begin{aligned}
& Y=\left(\left(\frac{2}{z-1}\right)+\left(\frac{-4.4444}{z-0.95}\right)+\left(\frac{2.25}{z-0.9}\right)+\left(\frac{-0.0278}{z-0.5}\right)\right) z \\
& Y=\left(\frac{2 z}{z-1}\right)+\left(\frac{-4.4444 z}{z-0.95}\right)+\left(\frac{2.25 z}{z-0.9}\right)+\left(\frac{-0.0278 z}{z-0.5}\right)
\end{aligned}
$$

Take the inverse z-transform

$$
y(k)=\left(2-4.4444(0.95)^{k}+2.25(0.9)^{k}-0.0278(0.5)^{k}\right) u(k)
$$

3) Determine $y(t)$ assuming

$$
Y=\left(\frac{0.005 z}{\left(z^{2}-1.6 z+0.68\right)(z-0.5)}\right) X \quad x(k)=u(k)
$$

Plug in the z -transform for $\mathrm{x}(\mathrm{k})$. Factor the roots

$$
Y=\left(\frac{0.005 z}{(z-0.8+j 0.2)(z-0.8-j 0.2)(z-0.5)}\right)\left(\frac{z}{z-1}\right)
$$

Pull out a z

$$
Y=\left(\frac{0.005 z}{(z-1)(z-0.8+j 0.2)(z-0.8-j 0.2)(z-0.5)}\right) z
$$

Do partial fractions

$$
\begin{aligned}
& Y=\left(\left(\frac{0.125}{z-1}\right)+\left(\frac{-0.0433-j 0.0913}{z-0.8+j 0.2}\right)+\left(\frac{-0.0433+j 0.0913}{z-0.8-j 0.2}\right)+\left(\frac{-0.0385}{z-0.5}\right)\right) z \\
& Y=\left(\frac{0.125 z}{z-1}\right)+\left(\frac{-0.0433-j 0.0913}{z-0.8+j 0.2}\right) z+\left(\frac{-0.0433+j 0.0913}{z-0.8-j 0.2}\right) z+\left(\frac{-0.0385 z}{z-0.5}\right)
\end{aligned}
$$

polar form actually works better with z transforms

$$
Y=\left(\frac{0.125 z}{z-1}\right)+\left(\frac{0.1011 \angle-115.3^{0}}{z-0.8246 \angle-14.04^{0}}\right) z+\left(\frac{0.1011 \angle 115.3^{0}}{z-0.8246 \angle 14.04^{0}}\right) z+\left(\frac{-0.0385 z}{z-0.5}\right)
$$

Take the inverse z-transform
$y(k)=\left(0.125+0.2022(0.8246)^{k} \cos \left(14.04^{0} \cdot k+115.3^{0}\right)-0.0385(0.5)^{k}\right) u(k)$

sto z conversion

3) Determine the discrete-time equivalent of $G(s)$. Assume $T=0.5$ second

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

The converstion from the s to z plane is

$$
\begin{array}{ll}
z=e^{s T} & \\
\mathrm{~s}=-0.1617 & \mathrm{z}=0.9223 \\
\mathrm{~s}=-1.04 & \mathrm{z}=0.5945 \\
\mathrm{~s}=-2.719 & \mathrm{z}=0.2568 \\
\mathrm{~s}=-5.05 & \mathrm{z}=0.0801
\end{array}
$$

giving

$$
G(z) \approx\left(\frac{k}{(z-0.9223)(z-0.5945)(z-0.2568)(z-0.0801)}\right)
$$

Matching the DC gain

$$
\begin{aligned}
& \left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=0}=0.6248 \\
& \left(\frac{k}{(z-0.9223)(z-0.5945)(z-0.2568)(z-0.0801)}\right)_{z=1}=0.6248 \\
& k=0.0135 \\
& G(z) \approx\left(\frac{0.0135}{(z-0.9223)(z-0.5945)(z-0.2568)(z-0.0801)}\right)
\end{aligned}
$$

(optional) $\mathrm{G}(\mathrm{z})$ has too much delay. You can fix this by adding zeros at $\mathrm{z}=0$.

To determine how many zeros you need, match the phase shift at $\mathrm{s}=\mathrm{j} 0.1 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=j 0.1}=0.5285 \angle-40.4669^{0} \\
& z=e^{s T}=e^{(j 0.1)(0.5)}=e^{j 0.05}=1 \angle 0.05 \\
& \left(\frac{0.0135}{(z-0.9223)(z-0.5945)(z-0.2568)(z-0.0801)}\right)_{z=1 \angle 0.05}=0.5304 \angle-47.1903^{0}
\end{aligned}
$$

for a difference of 6.7234 degrees. Each zero at $\mathrm{z}=0$ adds 0.05 radians $=2.86$ degrees. The number of zeros you need to make the phase match is

$$
n=\left(\frac{6.7234^{0}}{2.86^{\circ}}\right)=2.34
$$

Round to $\mathrm{n}=2$

$$
G(z) \approx\left(\frac{0.0135 z^{2}}{(z-0.9223)(z-0.5945)(z-0.2568)(z-0.0801)}\right)
$$

4) Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.1$ second

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

Converting from the s-plane to the z-plane

$$
\begin{array}{ll}
\mathrm{s}=-0.1617 & \mathrm{z}=0.9840 \\
\mathrm{~s}=-1.04 & \mathrm{z}=0.9012 \\
\mathrm{~s}=-2.719 & \mathrm{z}=0.7619 \\
\mathrm{~s}=-5.05 & \mathrm{z}=0.6035
\end{array}
$$

giving

$$
G(z) \approx\left(\frac{k}{(z-0.9840)(z-0.9012)(z-0.7619)(z-0.6035)}\right)
$$

Pick k to match the DC gain

$$
\begin{aligned}
& G(s=0)=0.6248 \\
& \left(\frac{k}{(z-0.9840)(z-0.9012)(z-0.7619)(z-0.6035)}\right)_{z=1}=0.6248 \\
& k=0.0000932
\end{aligned}
$$

$$
G(z) \approx\left(\frac{0.0000932}{(z-0.9840)(z-0.9012)(z-0.7619)(z-0.6035)}\right)
$$

(optional) Add zeros at $\mathrm{z}=0$ to match the phase shift at $\mathrm{s}=\mathrm{j} 0.1$

$$
\begin{aligned}
& z=e^{s T}=e^{(j 0.1)(0.1)}=e^{j 0.01}=1 \angle 0.01 \\
& \left(\frac{0.0000932}{(z-0.9840)(z-0.9012)(z-0.7619)(z-0.6035)}\right)_{z=1 \angle 0.01}=0.5279 \angle 41.718^{0} \\
& \left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)_{s=j 0.1}=0.5285 \angle-40.4669^{0}
\end{aligned}
$$

for a difference of 1.2513 degrees (0.0218 radian). Each zero at $\mathrm{z}=0$ adds 0.01 radian, meaning you need 2.18 zeros. Let $\mathrm{n}=2$

$$
G(z) \approx\left(\frac{0.0000932 z^{2}}{(z-0.9840)(z-0.9012)(z-0.7619)(z-0.6035)}\right)
$$

Note: If you change the sampling rate, $G(z)$ changes.

- Any compensator you designed for $G(z)$ at $T=0.5$ won't work for $T=0.1$.
- Changing the sampling rate is a big deal

Root Locus in the z-Domain

5) Assume $T=0.5$ seconds.

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

Draw the root locus for $\mathrm{G}(\mathrm{z})$
From problem \#3

$$
G(z) \approx\left(\frac{0.0135 z^{2}}{(z-0.9223)(z-0.5945)(z-0.2568)(z-0.0801)}\right)
$$

Drawing the root locus in Matlab

```
G = zpk([0,0],[0.9223,0.5945,0.2568,0.0801],0.0135);
k = logspace(-2,2,1000)';
rlocus(G,k);
hold on
s = [0:0.01:10] * (-1+j*2);
T = 0.5;
z = exp(s*T);
plot(real(z),imag(z),'r');
s = [0:0.01:10] * (0+j*1);
z = exp(s*T);
plot(real(z),imag(z),'r');
```


6) Find k for no overshoot in the step response

- Simulate the step response of the closed-loop system
$\mathrm{G}=\operatorname{zpk}([0,0],[0.9223,0.5945,0.2568,0.0801], 0.0135) ;$
$z=0.77$
evalfr(G,z)
- 0.8457956
$\mathrm{k}=1 / \mathrm{abs}(\mathrm{ans})$
$\mathrm{k}=1.1823188$

7) Find k for a damping ratio of 0.4559 (20% overshoot)

- Simulate the step response of the closed-loop system
$\mathrm{G}=\operatorname{zpk}([0,0],[0.9223,0.5945,0.2568,0.0801], 0.0135) ;$
$z=0.78+j * 0.28 ;$
evalfr(G,z)
$-0.1960269+0.0132974 i$
$\mathrm{k}=1 / \mathrm{abs}(\mathrm{ans})$
$\mathrm{k}=5.0896433$

8) Find k for a damping ratio of 0.000

- Simulate the step response of the closed-loop system
$\mathrm{G}=\operatorname{zpk}([0,0],[0.9223,0.5945,0.2568,0.0801], 0.0135) ;$
$z=0.82+j \star 0.56 ;$
evalfr(G,z)
$-0.0525318+0.0015737 i$
$\mathrm{k}=1 / \mathrm{abs}(\mathrm{ans})$
$\mathrm{k}=19.027567$

