## Homework \#10: ECE 461/661

Digital PID Control. Due Monday, November 16th

## I Control

Assume $\mathrm{T}=0.5$ seconds:

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

1) Design a digital I controller

$$
K(s)=k\left(\frac{z}{z-1}\right)
$$

that results in $20 \%$ overshoot in the step response.
Simulate the step response of the closed-loop system (VisSim or Simulink preferred with K(z)*G(s))

Option \#1: Design in the z-domain. Convert G(s) to G(z)

```
T = 0.5;
s = [-0.1617, -1.04, -2.719, -5.05]
Gz = zpk([0,0],\operatorname{exp}(s*T),1, T);
Gs = zpk([],s,1.4427);
k = evalfr(Gs,0) / evalfr(Gz,1)
    k = 0.0135
Gz = zpk([0,0],exp(s*T),k, T);
zpk(Gz)
        0.0135 z^2
(z-0.9223) (z-0.5945) (z-0.2568) (z-0.08006)
Sampling time (seconds): 0.5
    G(z)\approx(\frac{0.0135z}{}\mp@subsup{}{}{2}
```

Add K(z)

$$
G K=\left(\frac{0.0135 z^{3}}{(z-1)(z-0.9223)(z-0.5945)(z-0.2568)(z-0.0801)}\right)
$$

Draw the root locus along with the damping line

```
k = logspace(-2,2,1000)';
rlocus(GzKz,k);
hold on;
s = (-1 + j*2) * [0:0.01:10]';
z = exp(s*T);
plot(real(z),imag(z),'r');
```



Result: $\mathrm{z}=0.9667+\mathrm{j} 0.0616$

Option \#2: Numerical Solution.
The plant + compensator + sample \& hold is

$$
G \cdot K \cdot H=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{k z}{z-1}\right) \cdot\left(e^{-s T / 2}\right)
$$

Search along the damping line until the angles add up to 180 degrees

```
Kz = zpk(0,1,1,T);
T = 0.5;
s = -0.1 + j*0.2;
z = exp(s*T);
evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)
    -4.3508 + 2.3219i
s = 0.9*s;
z = exp(s*T);
evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)
    -5.4439+2.1500i
```

time passes....

```
s = 1.0001*s;
z = exp(s*T);
evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)
    -9.7937 - 0.0001i
s=-0.0630+0.1260i
z = 0.9671 + 0.0610i
```


## $\mathrm{K}(\mathrm{z})$ is then

```
evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)
ans = -9.7937 - 0.0001i
k = 1 / abs(ans)
k = 0.1021
Kz = zpk(0,1,k, T)
0.1021 z
--------
    (z-1)
```

Sampling time (seconds): 0.5

Checking with VisSim



## PI Control

2) Design a digital PI controller that results in $20 \%$ overshoot in the step response.

Use option \#2 (numerical method). Choose the zero to cancel the pole at $\mathrm{s}=-0.1617$

$$
\begin{aligned}
& z=e^{s T}=0.922 \\
& K(z)=k\left(\frac{z-0.922}{z-1}\right)
\end{aligned}
$$

Search along the dampin line until the angles add up to 180 degrees

$$
\begin{aligned}
& G(s) \cdot K(z) \cdot H(s)=1 \angle 180^{0} \\
& \left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{k(z-0.922)}{z-1}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s}=1 \angle 180^{0}
\end{aligned}
$$

itterating results in

$$
\begin{aligned}
& s=-0.2776+j 0.5553 \\
& z=0.8371+j 0.2386 \\
& \left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{k(z-0.922)}{z-1}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s}=0.2016 \angle 180^{0} \\
& k=\frac{1}{0.2016}=4.7478
\end{aligned}
$$

and

$$
K(z)=4.7478\left(\frac{z-0.922}{z-1}\right)
$$



## PID Control

3) Design a digital PID controller that results in $20 \%$ overshoot in the step response.

Let $\mathrm{K}(\mathrm{z})$ cancel the poles at $\mathrm{s}=-0.1617$ and $\mathrm{s}=-1.04$

$$
K(z)=k\left(\frac{(z-0.922)(z-0.5945)}{z(z-1)}\right)
$$

The plant + compensator + sample and hold is now

$$
\begin{aligned}
& G(s) \cdot K(z) \cdot H(s)=1 \angle 180^{0} \\
& \left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{k(z-0.922)(z-0.5945)}{z(z-1)}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s}=-1
\end{aligned}
$$

Search along the damping line until the angles add up to 180 degrees

$$
\begin{aligned}
& s=-0.4922+j 0.9843 \\
& z=0.6891+j 0.3695
\end{aligned}
$$

resulting in

$$
\left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{k(z-0.922)(z-0.5945)}{z(z-1)}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s}=0.0542 \angle 180^{0}
$$

k is then

$$
k=\frac{1}{0.0542}=18.4478
$$

$$
K(z)=18.4478\left(\frac{(z-0.922)(z-0.5945)}{z(z-1)}\right)
$$



## Meeting Design Specs

4) Design a digital controller with $T=0.5$ seconds that results in

- No error for a step input
- $20 \%$ overshoot for the step response, and
- A $2 \%$ settling time of 10 seconds

Simulate the step response of the closed-loop system (VisSim or Simulink preferred with $\mathrm{K}(\mathrm{z})^{*} \mathrm{G}(\mathrm{s})$ )

## Translation

- Make the system type 1
- Place the closed-loop dominant pole at $\mathrm{s}=-0.4+\mathrm{j} 0.8$
- Place the closed-loop dominant pole at $\mathrm{z}=0.7541+\mathrm{j} 0.3188$

Let

$$
K(z)=k\left(\frac{(z-0.922)(z-0.5945)}{(z-1)(z-a)}\right)
$$

Evaluate what we know

$$
\begin{aligned}
& \left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{(z-0.922)(z-0.5945)}{(z-1)}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s} \\
& \quad=0.0514 \angle-144.64^{0}
\end{aligned}
$$

The pole at $\mathrm{z}=$ a must contribute the remainder ( -35.3567 degrees $)$

$$
\begin{aligned}
& \angle(z-a)=35.3567^{0} \\
& a=0.7571-\frac{0.3188}{\tan \left(353567^{0}\right)}=0.307 \varepsilon
\end{aligned}
$$

and

$$
K(z)=k\left(\frac{(z-0.922)(z-0.5945)}{(z-1)(z-0.3078)}\right)
$$

Evaluating at the design point ( s and z ):

$$
\begin{aligned}
& \left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{(z-0.922)(z-0.5945)}{(z-1)(z-0.3078)}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s} \\
& \quad=0.0937 \angle 180^{0}
\end{aligned}
$$

meaning

$$
k=\frac{1}{0.0937}=10.671
$$

$$
K(z)=10.67\left(\frac{(z-0.922)(z-0.5945)}{(z-1)(z-0.3078)}\right)
$$



5) Design a digital controller with $T=0.1$ second that results in

- No error for a step input
- $20 \%$ overshoot for the step response, and
- A $2 \%$ settling time of 4 seconds

Simulate the step response of the closed-loop system (VisSim or Simulink preferred with K(z)*G(s))

## Translation

- Make the system type 1
- Place the closed-loop dominant pole at $\mathrm{s}=-0.4+\mathrm{j} 0.8$
- Place the closed-loop dominant pole at $\mathrm{z}=0.9577+\mathrm{j} 0.0768$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.1617)(s+1.04)}{s(s+b)}\right) \\
& K(z)=k\left(\frac{(z-0.9940)(z-0.9012)}{(z-1)(z-a)}\right)
\end{aligned}
$$

Evaluate what we know

$$
\begin{aligned}
& \left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{(z-0.9940)(z-0.9012)}{(z-1)}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s} \\
& =0.137 \angle-138.92^{0}
\end{aligned}
$$

The pole at $(z=a)$ must subtract 41.08 degrees to bring this to 180 degrees

$$
\begin{aligned}
& \angle(z+a)=41.08^{0} \\
& a=0.9577-\frac{0.0768}{\tan \left(41 \operatorname{nos}^{0}\right)}=0.869 t
\end{aligned}
$$

so now

$$
K(z)=k\left(\frac{(z-0.9940)(z-0.9012)}{(z-1)(z-0.8696)}\right)
$$

Evaluate what we now know

$$
\begin{aligned}
& \left(\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) \cdot\left(\frac{(z-0.9940)(z-0.9012)}{(z-1)(z-0.8696)}\right) \cdot\left(e^{-s T / 2}\right)\right)_{s} \\
& =0.1175 \angle 180^{0}
\end{aligned}
$$

k is then

$$
k=\frac{1}{0.1175}=8.5096
$$

$$
K(z)=8.5096\left(\frac{(z-0.9940)(z-0.9012)}{(z-1)(z-0.8696)}\right)
$$




Note: If you change the sampling rate, it's a complete re-design.

