Homework #11: ECE 461/661

Bode Plots. Nichols charts and gain compensation. Due Monday, November 23rd

Bode Plots

1) Determine the system, G(s), with the following gain vs. frequency

Draw in the asymptotes at multiples of 20dB/decade (shown in orange)

Each corner is a pole

$$G(s) \approx \left(\frac{k}{(s+0.9)(s+4.2)(s+8)(s+25)}\right)$$

Pick k to match the gain at one point (DC)

$$\left(\frac{k}{(s+0.9)(s+4.2)(s+8)(s+25)}\right)_{s=0} = 9dB = 2.51$$

k = 1899

$$G(s) \approx \left(\frac{1899}{(s+0.9)(s+4.2)(s+8)(s+25)}\right)$$

Draw in the straight line approximations

- There are two zeros at s = 0 (someplace left of 0.1)
- There are two poles at s = 0.7•
- There are two poles at s = 20•

The gain at the corner tells you the damping ratio

$$\frac{1}{2\zeta} = +5dB = 1.778 \qquad \zeta = 0.281 \qquad \theta = 73.67^{\circ}$$
$$\frac{1}{2\zeta} = +9dB = 2.818 \qquad \zeta = 0.177 \qquad \theta = 79.78^{\circ}$$
$$G(s) \approx \left(\frac{ks^2}{(s+0.7\angle \pm 73.67^{\circ})(s+20\angle \pm 79.78^{\circ})}\right)$$

Pick k to match the gain at a point. As s = 0.1, the gain is -20dB

$$\left(\frac{ks^2}{\left(s+0.7 \neq \pm 73.67^0\right)\left(s+20 \neq \pm 79.78^0\right)}\right)_{s=0.1} = -20 dB = 0.1$$

.

$$G(s) \approx \left(\frac{1960s^2}{(s+0.7\angle \pm 73.67^0)(s+20\angle \pm 79.78^0)}\right)$$

Nichols Charts

3)	The	gain	vs.	frequency	of a	system	is	measured
----	-----	------	-----	-----------	------	--------	----	----------

w (rad/sec)	1	2	3	4	5	6
Gain (dB)	4.63	-0.21	-4.45	-8.17	-11.51	-14.55
Phase (deg)	-67.6	-107.0	-133.67	-154.08	-170.63	-184.51

Using this data

- Transfer it to a Nichols chart
- Determine the maximum gain that results in a stable system $\mathbf{k} = +14\mathbf{dB}$
- Determine the gain, k, that results in a maximum closed-loop gain of $Mm = 1.5 \ k = 1.8$

```
>> w = [1,2,3,4,5,6]';
>> GdB = [4.63,-0.21,-4.45,-8.17,-11.51,-14.55]';
>> Gdeg = [-67.6,-107,-133.67,-154.08,-170.63,-184.51]';
>> Gw = 10.^(GdB/20) .* exp(j*Gdeg*pi/180)
0.6494 - 1.5755i
-0.2854 - 0.9335i
-0.4137 - 0.4333i
-0.3511 - 0.1706i
-0.2622 - 0.0433i
-0.1867 + 0.0147i
>> Nichols2(Gw*[1,2],1.5);
>> Nichols2(Gw*[1,1.8],1.5);
>> Nichols2(Gw*[1,1.8],1.5);
```


4) Assume

$$G(s) = \left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)$$

Find G(jw) using Matlab (or similar program). With ths data,

- Draw a Nichols chart
- Determine the maximum gain that results in a stable system $\mathbf{k} = +28 dB$
- Determine the gain, k, that results in a maximum closed-loop gain of $Mm = 1.5 \ k = 10$

```
>> w = [0:0.1:10]';
>> s = j*w;
>> Gw = 1.4427 ./ ( (s+0.1617).*(s+1.04).*(s+2.719).*(s+5.05) );
>> Nichols2(Gw,1.5);
>> Nichols2(Gw*[1,2],1.5);
>> Nichols2(Gw*[1,4],1.5);
>> Nichols2(Gw*[1,5],1.5);
>> Nichols2(Gw*[1,5],1.5);
>> Nichols2(Gw*[1,7],1.5);
>> Nichols2(Gw*[1,8],1.5);
>> Nichols2(Gw*[1,9],1.5);
>> Nichols2(Gw*[1,10],1.5);
```


5) Assume a 500ms delay is added

$$G(s) = \left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) e^{-0.5s}$$

Find G(jw) using Matlab (or similar program). With ths data,

- Draw a Nichols chart
- Determine the maximum gain that results in a stable system $\mathbf{k} = +23 dB$
- Determine the gain, k, that results in a maximum closed-loop gain of Mm = 1.5 k = 6.4

```
>> w = [0:0.1:10]';
>> s = j*w;
>> Gw = 1.4427 ./ ( (s+0.1617).*(s+1.04).*(s+2.719).*(s+5.05) ) .*
exp(-0.5*s);
>> Nichols2(Gw*[1,10],1.5);
>> Nichols2(Gw*[1,6],1.5);
>> Nichols2(Gw*[1,6.2],1.5);
>> Nichols2(Gw*[1,6.3],1.5);
>> Nichols2(Gw*[1,6.4],1.5);
>> Nichols2(Gw*[1,6.4],1.5);
```

