Homework \#12: ECE 461/661

Gain \& Lead Compensation with Bode Plots. Due Monday, November 30th
Problem 1 \& 2: Assume

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)
$$

1) Design a gain compensator, $K(s)=k$, that results in

- A 50 degree phase margin

Also determine

- The resulting 0 dB gain frequency,
- The closed-loop frequency response: $\left(\frac{G k}{1+G k}\right)$

Search $G(j w)$ until the angle is -130 degrees

$$
G(j 0.6631)=0.1202 \angle-130^{0}
$$

Pick k to make the gain one at this frequency

$$
k=\frac{1}{0.1202}=8.3174
$$

Resulting 0 dB gain frequency $=0.6631 \mathrm{rad} / \mathrm{sec}$
Resulting gain vs. frequency

2) Design a lead compensator of the form

$$
K(s)=k\left(\frac{s+a}{s+10 a}\right)
$$

that results in

- A 50 degree phase margin

Also determine

- The resulting 0 dB gain frequency, $\mathbf{w}=\mathbf{1 . 3 2 0 2} \mathbf{~ r a d} / \mathbf{s e c}$
- The closed-loop frequency response:

Pick the zero:

- Pick the zero to be $1 . .3$ times $0.6631 \mathrm{rad} / \mathrm{sec}$ (problem \#1)
- Pick the zero to cancel the pole at $\mathrm{s}=-1.04$

$$
K(s)=k\left(\frac{s+1}{s+10}\right)
$$

$$
G K=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right)\left(\frac{s+1}{s+10}\right) k
$$

Search w until the phase is - 130 degrees

$$
G K(j 1.3202)=0.0067 \angle-130^{0}
$$

$$
k=\frac{1}{0.0067}=148.88
$$

$$
K(s)=148.88\left(\frac{s+1}{s+10}\right)
$$

```
Kw = 148.88 * (s+1) ./ (s+10);
GclwLead = (Gw.*Kw) ./ (1 + Gw.*Kw);
plot(w,abs(GclwLead),'b',w,abs(Gclw),'r')
```


Problem 3\&4: Assume a 500ms delay is added

$$
G(s)=\left(\frac{1.4427}{(s+0.1617)(s+1.04)(s+2.719)(s+5.05)}\right) e^{-0.5 s}
$$

3) Design a gain compensator, $K(s)=k$, that results in

- A 50 degree phase margin

Also determine

- The resulting 0 dB gain frequency, $\mathbf{w}=\mathbf{0 . 5 1 3 4} \mathbf{~ r a d} / \mathbf{s e c}$
- The closed-loop frequency response:

Search along w until the pase is -130 degrees

$$
G(j 0.5134)=0.1645 \angle-130^{0}
$$

Pick k to make the gain one at this frequency

```
    k= 直1645}=6.07
Gw = 1.4427 ./ ( (s+0.1617).*(s+1.04).*(s+2.719).*(s+5.05) ) .*
exp(-0.5*s);
k = 6.078;
Gclw = (Gw*k) ./ (1 + Gw*k);
plot(w,abs(Gclw))
xlim([0,10]);
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


4) Design a lead compensator of the form

$$
K(s)=k\left(\frac{s+a}{s+10 a}\right)
$$

that results in

- A 50 degree phase margin

Also determine

- The resulting 0dB gain frequency,
- The closed-loop frequency response:

Place the zero

- 1 to 3 times $0.5134 \mathrm{rad} / \mathrm{sec}$, or
- To cancel the pole at $\mathrm{s}=-1$

Let

$$
K(s)=k\left(\frac{s+1}{s+10}\right)
$$

Search w until the phase of GK is - 130 degrees

$$
\begin{aligned}
& G K(j 0.7953)=0.01190 \angle-130^{0} \\
& k=\frac{1}{0.01190}=83.74 \\
& \text { >> Kw }=83.74 \text { * (s+1) ./ (s+10); } \\
& \text { >> Gclw = (Gw.*Kw) ./ (1 + Gw.*Kw); } \\
& \text { >> plot(w, abs (Gclw)) } \\
& \text { >> xlabel('Frequency (rad/sec)'); } \\
& \text { >> ylabel('Gain'); }
\end{aligned}
$$

