ECE 461 - Final: Name

Fall-2021

1a) Give the transfer function for a system with the following step response:

DC gain $=1.6$
2% settling time $=0.6$ seconds

$$
\sigma=\frac{4}{0.6}=-6.67
$$

Frequency of oscillation

$$
\omega_{d}=\left(\frac{4 \text { cycles }}{0.5 \text { seconds }}\right) 2 \pi=50.27
$$

meaning

$$
G(s) \approx\left(\frac{4277}{(s+6.67+j 50.27)(s+6.67-j 50.27)}\right)
$$

The numberator is whatever it takes to make the DC gain 1.6

1b) What is the step response for the following system:

$$
Y=\left(\frac{20,000}{(s+12+j 30)(s+12-j 30)(s+140)}\right) X
$$

DC Gain	2% Settling Time	\% Overshoot
0.137	$4 / 12 \mathrm{sec}$	$\mathbf{2 8 . 5 \%}$

domiant pole is $-12+\mathrm{j} 30$

$$
\begin{aligned}
& \theta=\arctan \left(\frac{30}{12}\right)=68.199^{0} \\
& \zeta=\cos (\theta)=0.371 \\
& O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)=0.285
\end{aligned}
$$

28.5\% overshoot

2a) Write the differential equations which describe the following circuit (i.e. write the N differential equations which correspond to the voltage node equations)

$$
\begin{aligned}
& V_{1}=0.1 s I_{1}=V_{i n}-10 I_{1}-V_{3} \\
& I_{2}=0.01 s V_{2}=\left(\frac{V_{3}-V_{2}}{20}\right) \\
& I_{3}=0.02 s V_{3}=I_{1}-\left(\frac{V_{3}-V_{2}}{20}\right)-I_{4} \\
& V_{4}=0.2 s I_{4}=V_{3}-70 I_{4}
\end{aligned}
$$

2b) Express these dynamics in state-space form

$$
\left.\begin{array}{l}
s I_{1}=10 V_{\text {in }}-100 I_{1}-10 V_{3} \\
s V_{2}=5 V_{3}-5 V_{2} \\
s V_{3}=50 I_{1}-2.5 V_{3}+2.5 V_{2}-50 I_{4} \\
s I_{4}=5 V_{3}-350 I_{4} \\
Y=V_{3}-30 I_{4} \\
s\left[\begin{array}{l}
I_{1} \\
V_{2} \\
V_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{ccc}
-100 & 0 & -10 \\
0 & -5 & 0 \\
50 & 2.5 & -2.5 \\
0 & 0 & -50 \\
5 & -350
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
V_{2} \\
V_{3} \\
I_{4}
\end{array}\right]+\left[\begin{array}{c}
10 \\
0 \\
0 \\
0
\end{array}\right] V_{\text {in }} \\
Y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}-30\right.
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
V_{2} \\
V_{3} \\
I_{4}
\end{array}\right]+[0] V_{\text {in }} .
$$

3) Gain Compensation: The root locus for

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

is shown below. Determine the following:

DC gain of the open-loop system

$$
K_{p}=G K=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)_{s=0} \cdot 3.275=2.911
$$

DC gain of the closed-loop system

$$
D C=\left(\frac{G K}{1+G K}\right)=\left(\frac{2.911}{1+2.911}\right)=0.744
$$

4) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- No error for a step input, and
- A closed-loop dominant pole at $\mathrm{s}=-1.5+\mathrm{j} 4$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.5)(s+3)}{s(s+a)}\right) \\
& G K=\left(\frac{40 k}{s(s+5)(s+6)(s+a)}\right)
\end{aligned}
$$

Evaluate what we know at the design point

$$
\left(\frac{40}{s(s+5)(s+6)}\right)_{s=-1.5+j 4}=0.293 \angle-201^{0}
$$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+a)^{2}}\right) \\
& G K=\left(\frac{40 k}{s(s+6)(s+a)^{2}}\right) \\
& \left(\frac{40}{s(s+6)}\right)_{s=-1.5+j 4}=1.555 \angle-152.19^{0} \\
& \angle(s+a)^{2}=27.810^{0} \\
& \angle(s+a)=13.905^{0} \\
& a=\left(\frac{4}{\tan \left(13.905^{0}\right)}\right)+1.5=17.65
\end{aligned}
$$

so

$$
K(s)=k\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+17.657)^{2}}\right)
$$

evaluate what we know

$$
\begin{aligned}
& \left(\frac{40}{s(s+6)(s+17.657)^{2}}\right)_{s=-1.5+j 4}=0.006 \angle 180^{0} \\
& k=\frac{1}{0.006}=178.148 \\
& K(s)=178.148\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+17.657)^{2}}\right)
\end{aligned}
$$

It also works to cancel all four poles:

$$
K(s)=112.517\left(\frac{(s+0.5)(s+3)(s+5)(s+6)}{s(s+10.8561)^{3}}\right)
$$

5) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

Determine a digital compensator, $\mathrm{K}(\mathrm{z})$, which results in the closed-loop system having

- No error for a step input,
- A closed-loop dominant pole at $\mathrm{s}=-1.5+\mathrm{j} 7$, and
- A sampling rate of $\mathrm{T}=0.1$

$$
\begin{aligned}
& s=-1.5+j 7 \\
& z=e^{s T}=0.6583+j 0.5545
\end{aligned}
$$

Let

$$
K(z)=k\left(\frac{(z-0.9512)(z-0.7408)(z-0.6065)(z-0.5488)}{(z-1)(z-a)^{3}}\right)
$$

Evaluate what we know

$$
\begin{aligned}
& \mathrm{G}(\mathrm{~s}) * 50 \mathrm{~ms} \text { delay } * \mathrm{~K}(\mathrm{z}) \\
& \left(\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{(z-0.9512)(z-0.7408)(z-0.6065)(z-0.5488)}{(z-1)}\right)\right)_{s=-1.5+j 7}=0.0022 \angle-58.6^{0} \\
& \angle(z-a)^{3}=121.36^{0} \\
& \quad \angle(z-a)=40.45^{0} \\
& a=0.6583-\left(\frac{0.5545}{\tan \left(40.45^{0}\right)}\right)=0.0080
\end{aligned}
$$

Evaluate what we know

$$
\begin{aligned}
& \left(\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{(z-0.9512)(z-0.7408)(z-0.6065)(z-0.5488)}{(z-1)(z-0.0080)^{3}}\right)\right)_{s=-1.5+j 7}=0.0036 \angle 180^{0} \\
& \quad k=\frac{1}{00046}=280.9 \\
& K(z)=280.9\left(\frac{(z-0.9512)(z-0.7408)(z-0.6065)(z-0.5488)}{(z-1)(z-0.0080)^{3}}\right)
\end{aligned}
$$

6) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- A closed-loop DC gain of 1.000 (i.e. no error for a step input),
- A 0 dB gain frequency of $7 \mathrm{rad} / \mathrm{sec}$, and
- A phase margin of 24 degrees

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+a)^{2}}\right) \\
& G K=\left(\frac{40 k}{s(s+6)(s+a)^{2}}\right)
\end{aligned}
$$

Evaluate what we know

$$
\left(\frac{40}{s(s+6)}\right)_{s=j 7}=0.6198 \angle-139.39^{0}
$$

We want the phase to be -156 degrees for a 24 degre phase margin. Meaning

$$
\begin{aligned}
& \angle(s+a)^{2}=16.6013^{0} \\
& \angle(s+a)=8.3006^{0} \\
& a=\left(\frac{7}{\tan \left(8.3006^{0}\right)}\right)=47.9795
\end{aligned}
$$

Evaluate what we now know

$$
\begin{aligned}
& G K=\left(\frac{40}{s(s+6)(s+47.9795)^{2}}\right)_{s=j 7}=0.0003 \angle-156^{0} \\
& k=\frac{1}{0.0003}=3793
\end{aligned}
$$

meaning

$$
K(s)=3793\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+47.9795)^{2}}\right)
$$

It also works to cancel all four poles

$$
K(s)=1141.8\left(\frac{(s+0.5)(s+3)(s+5)(s+6)}{s(s+17.3256)^{3}}\right)
$$

