ECE 461 - Final: Name

Fall-2021

1a) Give the transfer function for a system with the following step response:

1b) What is the step response for the following system:

$$
Y=\left(\frac{20,000}{(s+12+j 30)(s+12-j 30)(s+140)}\right) X
$$

DC Gain	2% Settling Time	\% Overshoot

2a) Write the differential equations which describe the following circuit (i.e. write the N differential equations which correspond to the voltage node equations)

2b) Express these dynamics in state-space form

$$
\begin{aligned}
& \qquad\left[\begin{array}{l}
I_{1} \\
V_{2} \\
V_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{l}
---- \\
---- \\
---- \\

\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
V_{3} \\
I_{4}
\end{array}\right]+\left[\begin{array}{c}
- \\
- \\
- \\
-
\end{array}\right] V_{i n} \\
& Y=[----]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
V_{3} \\
I_{4}
\end{array}\right]
\end{aligned}
$$

3) Gain Compensation: The root locus for

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

is shown below. Determine the following:

Maximum gain, k , for a stable closed-loop system	
k for a damping ratio of 0.4	
Closed-loop dominant pole(s) for a damping ratio of 0.4	
Closed-Loop DC gain for a damping ratio of 0.4	

4) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- No error for a step input, and
- A closed-loop dominant pole at $\mathrm{s}=-1.5+\mathrm{j} 4$

5) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

Determine a digital compensator, $\mathrm{K}(\mathrm{z})$, which results in the closed-loop system having

- No error for a step input,
- A closed-loop dominant pole at $\mathrm{s}=-1.5+\mathrm{j} 7$, and
- A sampling rate of $\mathrm{T}=0.1$

6) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- A closed-loop DC gain of 1.000 (i.e. no error for a step input),
- A 0 dB gain frequency of $7 \mathrm{rad} / \mathrm{sec}$, and
- A phase margin of 24 degrees

7) Determine R and C so that the following compensator has the transfer function of

$$
K(s)=300\left(\frac{(s+2)(s+9)}{s(s+15)}\right)
$$

