Homework \#5: ECE 461/661

Mass-Spring Systems, Rotational Systems. Due Monday, September 27th

Mass Spring systems

1) Draw the circuit equivalent for the following mass-spring systems.

- Express the dynamics in state-space form
- Find the transfer function from F to X2
- Plot the step response from F to X2

Problem 1
2) Draw the circuit equivalent for the following mass-spring systems.

- Express the dynamics in state-space form
- Find the transfer function from F to X4

Plot the step response from F to X4

Problem 6: $\mathrm{M}=2.0 \mathrm{~kg}, \mathrm{~B}=0.3 \mathrm{Ns} / \mathrm{m}, \mathrm{K}=10 \mathrm{~N} / \mathrm{m}$

Rotational Systems

3) Draw the circuit equivalent for the following rotational system.

- Express the dynamics in state-space form
- Find the transfer function from T to Q1
- Plot the step response from T to Q1

Problem 3: $\mathrm{J}=2.5 \mathrm{Kg} \mathrm{m} / \mathrm{s}^{\wedge} 2 . \mathrm{K}=20 \mathrm{Nm} / \mathrm{rad}, \mathrm{D} 3=1.5 \mathrm{Nms} / \mathrm{rad}$

Motors

4) Find the transfer function for the following DC servo motor
http://www.baldor.com/catalog/CDP3306
Allen Bradley CDP3306: 1/4 HP Servo Motor

- \$716ea
- $\mathrm{Kt}=1.117 \mathrm{ft}-\mathrm{lb} @ 1.68 \mathrm{~A}$
- $\mathrm{Ra}=8.54 \mathrm{Ohms}$
- $\mathrm{La}=60.59 \mathrm{mH}$
- J = $4.680 \mathrm{lb}-\mathrm{ft} 2$
- 1.43A @ 1690rpm @ $0.945 \mathrm{ft}-\mathrm{lb}$ load
- 0.1A @ 1830rpm @ 0 ft-lb load
- Weight 23.0 kg

5) Assume this motor is used to power an electric bicycle at 20 mph

- Motor speed @ 20mph = 1750 rpm
- Gear (wheel) used to convert 1750 rpm to 20 mph
- Bicycle weight $=100 \mathrm{~kg}$

What is the gear reduction (wheel diameter) to convert 1750 rpm to 20 mph ?
What is the inertia relative to the DC servo motor (bring the 100 kg mass back to the motor through a gear)
What is the transfer function (dynamics) for the bicycle / servo motor combination?

