Homework #6: ECE 461/661

Error Constants, Routh Criteria, Skething a Root Locus. Due Monday, October 11th

Error Constants

1) Determine the error constants and steady-state error for the following systems

G(s)	System Type	Кр	Kv	Error for a unit step input
$\left(\frac{20}{(s+2)(s+10)}\right)$				
$\left(\frac{20}{s(s+2)(s+10)}\right)$				
$\left(\frac{20(s+0.3)}{s^2(s+2)(s+10)}\right)$				
$\left(\frac{20}{(s-2)(s+10)}\right)$				

Routh Criteria

Determine the range of k that results in a negative definite polynomial (i.e. a stable system)

2)
$$(s-2)(s+10)(s+12) + 2k = 0$$

3) (s+2)(s+5)(s+10)(s+12) + 2k = 0

Sketching a Root Locus

Sketch the root locus plot for the following systems for 0 < k < infinity. Also plot the

• real axis loci, break away points, jw crossings (if any), and asymptotes

4)
$$(s-2)(s+10)(s+12) + 2k = 0$$

5)
$$(s+2)(s+5)(s+10)(s+12) + 2k = 0$$

Root Locus with Complex Poles & Zeros

Sketch the root locus plot for the following systems for 0 < k < infinity. Also plot the

• real axis loci, break away points, jw crossings (if any), asymptotes, and departure/approach angle

6)
$$G(s) = \left(\frac{s+5}{s(s^2+2s+5)}\right)$$

7)
$$G(s) = \left(\frac{s^2 + 2s + 5}{s(s+2)(s+4)(s+6)}\right)$$