ECE 461/661-Test \#1: Name

Fall 2021

1) Determine the functions for X and Y according to the following ladder diagram. (you don't need to simplify)

$$
\begin{aligned}
& X=(A B+\bar{C}) \bar{Y}+X \bar{B}+D \\
& Y=\bar{X}
\end{aligned}
$$

2) Give the transfer function for a system with the following response to a unit step input:

This has oscillations meaning it's a 2 nd order system.

$$
G(s)=\left(\frac{a}{(s+b+j c)(s+b-j c)}\right)
$$

DC Gain $=27$

$$
G(s=0)=27=\left(\frac{a}{b^{2}+c^{2}}\right)
$$

Frequency of oscillation (c)
3 cycles in 16 ms

$$
c=\left(\frac{3 \text { cycles }}{16 \mathrm{~ms}}\right) 2 \pi=1178 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

2% Settlimg time $=20 \mathrm{~ms}$ (ballpark)

$$
b=\frac{4}{T_{s}}=\frac{4}{20 m s}=200
$$

so

$$
G(s) \approx\left(\frac{27\left(200^{2}+1178^{2}\right)}{(s+200+j 1178)(s+200-j 1178)}\right)
$$

3) Find the transfer funciton from X to Y

Shortcut

$$
Y=\left(\frac{B C D E}{1+B C F+A C D+D E G}\right) X
$$

Long Way

$$
\begin{aligned}
& \mathrm{m}=\mathrm{X}-\mathrm{FCn} \\
& \mathrm{n}=\mathrm{Bm}-\mathrm{ADp} \\
& \mathrm{p}=\mathrm{Cn}-\mathrm{GY} \\
& \mathrm{Y}=\mathrm{EDp}
\end{aligned}
$$

Solving

$$
\mathrm{n}=\mathrm{B}(\mathrm{X}-\mathrm{FCn})-\mathrm{ADp}
$$

$$
(1+\mathrm{BFC}) \mathrm{n}=\mathrm{BX}-\mathrm{ADp}
$$

$$
n=\left(\frac{B X-A D p}{1+B F C}\right)
$$

$$
p=C\left(\frac{B X-A D p}{1+B F C}\right)-G Y
$$

$$
(1+B F C) p=C B X-C A D p-(1+B F C) G Y
$$

$$
(1+B F C+C A D) p=C B X-G Y-B F C G Y
$$

$$
p=\frac{C B X-G Y 1-B F C G Y}{1+B F C+C A D)}
$$

$$
Y=E D\left(\frac{C B X-G Y 1-B F C G Y}{1+B F C+C A D)}\right)
$$

$$
(1+B F C+C A D) Y=E D C B X-E D G Y-E D B F C G Y
$$

$$
(1+B F C+C A D+E D G+E D B F C G) Y=E D C B X
$$

$$
Y=\left(\frac{E D C B}{(1+B F C+C A D+E D G+E D B F C G)}\right) X=\left(\frac{E D C B}{(1+B F C)(1+E D G)+A C D}\right) X
$$

4) For the following RLC circuit:

- Write the dynamics of this system as four compled differential equations in terms of \{Vin, V1, V2, I3, I4\}
- Express these dynamics in state-space form

$$
\begin{aligned}
& I_{1}=0.2 s V_{1}=\left(\frac{V_{i n}-V_{1}}{20}\right)-\left(\frac{V_{1}-V_{2}}{30}\right) \\
& I_{2}=0.25 s V_{2}=\left(\frac{V_{1}-V_{2}}{30}\right)-\left(\frac{V_{2}}{40}\right)-I_{4} \\
& V_{3}=0.1 s I_{3}=V_{i n}-10 I_{3}-50\left(I_{3}+I_{4}\right) \\
& V_{4}=0.5 s I_{4}=V_{2}-50\left(I_{3}+I_{4}\right)
\end{aligned}
$$

Simplifying

$$
\begin{aligned}
& s V_{1}=0.25 V_{i n}-0.4167 V_{1}+0.1667 V_{2} \\
& s V_{2}=0.133 V_{1}-0.233 V_{2}-4 I_{4} \\
& s I_{3}=10 V_{i n}-600 I_{3}-500 I_{4} \\
& s I_{4}=2 V_{2}-100 I_{3}-100 I_{4}
\end{aligned}
$$

In matrix form

$$
\begin{aligned}
& {\left[\begin{array}{c}
s V_{1} \\
s V_{2} \\
s I_{3} \\
s I_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-0.4167 & 0.1667 & 0 & 0 \\
0.133 & -0.233 & 0 & -4 \\
0 & 0 & -600 & -500 \\
0 & 2 & -100 & -100
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
I_{3} \\
I_{4}
\end{array}\right]+\left[\begin{array}{c}
0.25 \\
0 \\
10 \\
0
\end{array}\right] V_{i n}} \\
& Y=50\left(I_{3}+I_{4}\right)=\left[\begin{array}{llll}
0 & 0 & 50 & 50
\end{array}\right] \bar{X}+[0] V_{\text {in }}
\end{aligned}
$$

5) For the following mass-spring system

- Draw the circuit equivalent for the following mass-spring system
- Write the equations of motion (i.e. write the voltage node equations)

$\left(0.2 s^{2}+7 s+2+3\right) X_{1}-(7 s+3) X_{2}=0$
$\left(0.5 s^{2}+6 s+7 s+3+4+1\right) X_{2}-(7 s+3) X_{1}-(4) X_{3}=F$
$\left(0.1 s^{2}+8 s+5+4\right) X_{3}-(4) X_{2}=0$

