ECE 461/661-Test \#2: Name

Feedback and Root Locus - Fall 2021

Root Locus

1) The root locus of $\mathrm{G}(\mathrm{s})$ is shown below.

$$
G(s)=\left(\frac{10(s+1+j 3)(s+1-j 3)}{s(s+6)(s+5+j 3)(s+5-j 3)}\right)
$$

Determine the following

Approach angle to the zero at $\mathrm{s}=-1+\mathrm{j} 3$	Departure angle from the pole at $-5+\mathrm{j} 3$	real axis loci	Breakaway Point	Asymptotes
-74.291 degrees	173.088 degrees	$(0,-6)$	-1.51	2 asymptotes angle $+/-90$ degrees intersect $=-7.00$

Approach Angle

$$
\left(\frac{10(s+1+j 3)}{s(s+6)(s+5+j 3)(s+5-j 3)}\right)_{s=-1+j 3}=0.113 \angle-105.709^{0}
$$

Add (zero) -74.291 degrees to get -180 degrees

Departure Angle:

$$
\left(\frac{10(s+1+j 3)(s+1-j 3)}{s(s+6)(s+5+j 3)}\right)_{s=-5+j 3}=2.607 \angle-6.911^{0}
$$

Subtract (pole) 173.089 degrees to get -180 degrees

Asymptote Intersect
4 poles -2 zeros $=2$ asymptotes
$2 \theta=180^{\circ}$
$\theta= \pm 90^{0}$
Intersect $=\left(\frac{\sum_{\text {poles }-} \sum_{\text {zeros }}}{\# \text { poles-\#zeros }}\right)$
Intersect $=\left(\frac{(0-6-5-5)-(-1-1)}{4-2}\right)=-7$

Gain Compensation

2) Design a gain compensator $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ so that the feedback system has 50% overshoot for a step input.

Also determine

- The resulting error constant, Kp,
- The closed-loop dominant pole(s)

Assume

$$
G(s)=\left(\frac{100}{(s-1)(s+5)(s+7)}\right)
$$

Dampng Ratio	Design point	k	Kp	Closed-loop dominant pole
zeta $\mathbf{= 0 . 2 1 5}$	$\mathbf{s}=\mathbf{- 0 . 6 7 8}+\mathbf{j 3 . 0 7 6}$	$\mathbf{1 . 3 0 7}$	$\mathbf{- 3 . 7 3}$	$\mathbf{s}=\mathbf{- 0 . 6 7 8}+\mathbf{j 3 . 0 7 6}$

Step 1: Draw the damping line

- 50% overshoot means zeta $=0.215$
- angle $=77.56$ degrees

Step 2: Determine the design point (where the root locus intersects with the damping line)

- $\mathrm{s}=-0.678+\mathrm{j} 3.076$

Step 3: Find k

$$
\begin{aligned}
& \left(\frac{100}{(s-1)(s+5)(s+7)}\right)_{s=-0.678+j 3.076}=0.765 k \angle 180^{0} \\
& k=\frac{1}{0.765}=1.307
\end{aligned}
$$

Kp :

$$
\begin{aligned}
& K_{p}=(G k)_{s \rightarrow 0} \\
& K_{p}=\left(\frac{100}{(s-1)(s+5)(s+7)}\right)_{s \rightarrow 0} \cdot 1.307 \\
& K_{p}=-3.733
\end{aligned}
$$

Lead/PI Compensation

3) Design a compensator, $K(s)$, so that the closed-loop system has

- No error for a step input

- Closed-Loop dominant poles at $\mathrm{s}=-2+\mathrm{j} 3$, and
- Finite gain as $s \rightarrow \infty$ (i.e. have at least as many poles as zeros)

$$
G(s)=\left(\frac{100}{(s+2)(s+5)(s+7)}\right)
$$

Pick K(s)

- Add a pole at $\mathrm{s}=0$ to make it a type- 1 system
- Cancel the two zeros at -2 and -5
- Add a pole at -a . Pick 'a' so that $\mathrm{s}=-2+\mathrm{j} 3$ is on the root locus (angles add up to 180 degrees)

$$
K(s)=k\left(\frac{(s+2)(s+5)}{s(s+a)}\right)
$$

and

$$
G K=\left(\frac{100 k}{s(s+7)(s+a)}\right)
$$

Evaluate what we know at the design point

$$
\left(\frac{100}{s(s+7)}\right)_{s=-2+j 3}=4.757 \angle-154.654^{0}
$$

So that the angle adds up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=25.346^{0} \\
& a=\frac{3}{\tan \left(25346^{\circ}\right)}+2=8.33
\end{aligned}
$$

GK is now

$$
G K=\left(\frac{100 k}{s(s+7)(s+8.333)}\right)_{s=-2+j 3}=0.679 k \angle 180^{0}
$$

To make GK = -1

$$
k=\frac{1}{0.679}=1.473
$$

$$
K(s)=1.473\left(\frac{(s+2)(s+5)}{s(s+8.333)}\right)
$$

Compensator Design (hardware)

4) Design a circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{150(s+7)(s+11)}{s(s+22)}\right)
$$

Rewrite as

$$
K(s)=\left(15\left(\frac{s+11}{s+22}\right)\right)\left(10\left(\frac{s+7}{s}\right)\right)
$$

