ECE 461/661 - Test \#2: Name

Feedback and Root Locus - Fall 2021

Root Locus

1) The root locus of $G(s)$ is shown below.

$$
G(s)=\left(\frac{10(s+1+j 3)(s+1-j 3)}{s(s+6)(s+5+j 3)(s+5-j 3)}\right)
$$

Determine the following

- Approach angle to the zero at $-1+\mathrm{j} 3$,
- Departure angle from the pole at $-5+\mathrm{j} 3$,
- The real axis loci,
- The breakaway point (approx), and
- The asymptotes (number, angle, intercept)

Gain Compensation

2) Design a gain compensator $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ so that the feedback system has 50% overshoot for a step input.

Also determine

- The resulting error constant, Kp,
- The closed-loop dominant pole(s)

Assume

$$
G(s)=\left(\frac{100}{(s-1)(s+5)(s+7)}\right)
$$

Lead/PI Compensation

3) Design a compensator, $\mathrm{K}(\mathrm{s})$, so that the closed-loop system has

- No error for a step input

- Closed-Loop dominant poles at $\mathrm{s}=-2+\mathrm{j} 3$, and
- Finite gain as $\mathrm{s} \rightarrow \infty$ (i.e. have at least as many poles as zeros)

$$
G(s)=\left(\frac{100}{(s+2)(s+5)(s+7)}\right)
$$

Compensator Design (hardware)

4) Design a circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{150(s+7)(s+11)}{s(s+22)}\right)
$$

