ECE 461/661-Test \#3: Name

Digital Control \& Frequemncy Domain techniques - Fall 2021

sto \mathbf{z} conversion

1) Determine the discrete-time equivalent for $G(s)$. Assume a sampling rate of $T=0.1$ second

$$
G(s)=\left(\frac{100}{(s+3)(s+8)(s+12)}\right)
$$

Convert as $z=e^{s T}$

$$
\begin{array}{ll}
s=-3 & z=e^{s T}=0.7408 \\
s=-8 & z=0.4493 \\
s=-12 & z=0.3012
\end{array}
$$

meaning

$$
G(z)=\left(\frac{k}{(z-0.7408)(z-0.4493)(z-0.3012)}\right)
$$

To find k , match the gain at DC

$$
\begin{aligned}
& \left(\frac{100}{(s+3)(s+8)(s+12)}\right)_{s=0}=0.3472 \\
& \left(\frac{k}{(z-0.7408)(z-0.4493)(z-0.3012)}\right)_{z=1}=0.3472
\end{aligned}
$$

$$
k=0.0346
$$

(optional): Add zeros at the origin to match the phase at $1 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \left(\frac{100}{(s+3)(s+8)(s+12)}\right)_{s=j}=0.3257 \angle-30.3236^{0} \\
& \left(\frac{0.0346}{(z-0.7408)(z-0.4493)(z-0.3012)}\right)_{z=e^{j 0.1}}=0.3258 \angle-39.9969^{0} \\
& z=e^{j 0.1}=1 \angle 5.7296^{0}
\end{aligned}
$$

The number of zeros you need is

$$
n=\left(\frac{39.9969^{0}-30.3236^{0}}{5.7296^{0}}\right)=1.688
$$

Let $\mathrm{n}=2$ (slightly too large)

$$
G(z)=\left(\frac{0.0346 z^{2}}{(z-0.7408)(z-0.4493)(z-0.3012)}\right)
$$

Digital Compensators: K(z)

2) Assume a unity feedback system with a sampling rate of $\mathrm{T}=0.1$ second

$$
G(s)=\left(\frac{100}{(s+3)(s+8)(s+12)}\right)
$$

Design a digital compensator, $\mathrm{K}(\mathrm{z})$,
 which results in

- No error for a step input
- 5% overshoot $(\zeta=0.6901)$, and
- A 2% settling time of 1.5 seconds

Translation:

- Make it a type-1 system
- Place the closed loop dominant pole at

$$
\begin{aligned}
& \cdot \mathrm{s}=-2.667+\mathrm{j} 2.7966 \\
& \cdot \mathrm{z}=0.7362+\mathrm{j} 0.2114
\end{aligned}
$$

Let

$$
K(z)=k\left(\frac{(z-0.7408)(z-0.4493)}{(z-1)(z-a)}\right)
$$

Pick 'a' so that the phase is 180 degrees

$$
\left(\frac{100}{(s+3)(s+8)(s+12)}\right) \cdot e^{-0.05 s} \cdot k\left(\frac{(z-0.7408)(z-0.4493)}{(z-1)(z-a)}\right)_{s=-0.2667+j 2.7966}=1 \angle 180^{0}
$$

Evaluate what we know at the closed-loop dominant pole:

$$
\begin{aligned}
& \left(\frac{100}{(s+3)(s+8)(s+12)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{(z-0.7408)(z-0.4493)}{(z-1)}\right)=0.1541 \angle-149.2144^{0} \\
& \angle(z-a)=30.7856^{0} \\
& a=0.7362-\left(\frac{0.2114}{\tan \left(30.7856^{0}\right)}\right)=0.381 \angle
\end{aligned}
$$

giving

$$
\left(\frac{100}{(s+3)(s+8)(s+12)}\right) \cdot e^{-0.05 s} \cdot k\left(\frac{(z-0.7408)(z-0.4493)}{(z-1)(z-0.3814)}\right)_{s=-0.2667+j 2.7966}=0.3732 \angle 180^{0}
$$

so

$$
k=\frac{1}{0.3732}=2.6796
$$

$$
K(z)=2.6796\left(\frac{(z-0.7408)(z-0.4493)}{(z-1)(z-0.3814)}\right)
$$

3) Bode Plots

Determine the system, $G(s)$, which has the following gain vs. frequency

Gain (dB)

2 zeros left of 0.1

- assume zeros at $\mathrm{s}=0$

2 poles at $0.6 \mathrm{rad} / \mathrm{sec}$

- gain at corner is +4 dB (1.5849)
- $\zeta=\frac{1}{2 \cdot 1.5849}=0.3155 \quad\left(71.6^{0}\right)$

2 poles at $20 \mathrm{rad} / \mathrm{sec}$

- gain at corner is +15 dB (5.6234)
- $\zeta=\frac{1}{2 \cdot 5.6234}=0.0889 \quad\left(84.9^{0}\right)$
so

$$
G(s)=\left(\frac{k s^{2}}{\left(s+0.6 \angle \pm 71.6^{0}\right)\left(s+20 \angle \pm 84.9^{0}\right)}\right)=\left(\frac{1004 s^{2}}{\left(s+0.6 \angle \pm 71.6^{0}\right)\left(s+20 \angle \pm 84.9^{0}\right)}\right)
$$

Pick ' k ' to match the gain at some point, such as $\mathrm{G}(\mathrm{j} 3)=8 \mathrm{~dB}=2.51$ (results in $\mathrm{k}=1004$)

4) Nichols Charts

Assume a unity feedback system where the gain of $G(s)$ is as follows:

Determine

- The maximum gain, k , for stability ans $=+\mathbf{1 0 d B}$
- k that results in a resonance of $\mathrm{Mm}=2.5$ ans $=+2 \mathrm{~dB}$

frequency $(\mathrm{rad} / \mathrm{sec})$	7	8	9	10	12	15
Gain	10 dB	2 dB	-3 dB	-8 dB	-15 dB	-22 dB
Phase (degrees)	-130 deg	-145 deg	-160 deg	-175 deg	-190 deg	-205 deg

5) Analog Compensator (Bode Plots)

Assume a unity feedback system with

$$
G(s)=\left(\frac{10}{(s+3)(s+8)(s+12)}\right)
$$

Determine a compensator, $K(s)$, which results in

- No error for a step input
- A phase margin of 60 degrees
- A 0 dB gain frequency of $3 \mathrm{rad} / \mathrm{sec}$

Let K(s) be of the form

$$
K(s)=k\left(\frac{(s+3)(s+8)}{s(s+a)}\right)
$$

Find 'a' so that the phase is -120 degrees (60 degree phase margin) at $3 \mathrm{rad} / \mathrm{sec}$

$$
G K=\left(\frac{10 k}{s(s+a)(s+12)}\right)_{s=j 3}=1 \angle-120^{0}
$$

analyze what we know:

$$
\left(\frac{10}{s(s+12)}\right)_{s=j 3}=0.2695 \angle-104.0362^{0}
$$

meaning

$$
\begin{aligned}
& \angle(s+a)=15.9638^{0} \\
& a=\left(\frac{3}{\tan \left(15.9638^{\circ}\right)}\right)=10.487 ः
\end{aligned}
$$

Analyze what we now know

$$
\begin{aligned}
& \left(\frac{10}{s(s+10.4873)(s+12)}\right)_{s=j 3}=0.0247 \angle-120^{0} \\
& k=\frac{1}{0.0247}=40.4772
\end{aligned}
$$

$$
K(s)=40.4772\left(\frac{(s+3)(s+8)}{s(s+10.4873)}\right)
$$

