ECE 461/661 - Test #3: Name _____

Digital Control & Frequemncy Domain techniques - Fall 2021

s to z conversion

1) Determine the discrete-time equivalent for G(s). Assume a sampling rate of T = 0.1 second

$$G(s) = \left(\frac{100}{(s+3)(s+8)(s+12)}\right)$$

Digital Compensators: K(z)

2) Assume a unity feedback system with a sampling rate of T = 0.1 second

$$G(s) = \left(\frac{100}{(s+3)(s+8)(s+12)}\right)$$

Design a digital compensator, K(z), which results in

- No error for a step input
- 5% overshoot ($\zeta = 0.6901$), and
- A 2% settling time of 1.5 seconds

3) Bode Plots

Determine the system, G(s), which has the following gain vs. frequency

4) Nichols Charts

Assume a unity feedback system where the gain of G(s) is as follows:

Determine

- The maximum gain, k, for stability
- k that results in a resonance of Mm = 2.5

frequency (rad/sec)	7	8	9	10	12	15
Gain	10dB	2dB	-3dB	-8dB	-15dB	-22dB
Phase (degrees)	-130 deg	-145 deg	-160 deg	-175 deg	-190 deg	-205 deg

5) Analog Compensator (Bode Plots)

Assume a unity feedback system with

$$G(s) = \left(\frac{10}{(s+3)(s+8)(s+12)}\right)$$

Determine a compensator, K(s), which results in

- No error for a step input
- A phase margin of 60 degrees
- A 0dB gain frequency of 3 rad/sec

Compensator Design in the Frequency Domain

4) Assume a unity feedback system with

$$G(s) = \left(\frac{10}{s(s+2)(s+10)}\right)$$

Determine a compensator, K(s), which results in

- No error for a step input (closed-loop gain at DC = 1.000)
- A 60 degree phase margin, and
- A 0dB gain frequency of 2 rad/sec