Homework \#8: ECE 461/661

Meeting Specs, Delays, Unstable Systems. Due Monday, October 25th 20 points per problem

Meeting Design Specs

1) Assume

$$
G(s)=\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Translation:

- Make it a type-1 system
- no error for a step input
- Place the closed-loop dominant pole at $\mathrm{s}=-2+\mathrm{j} 4$

Let $\mathrm{K}(\mathrm{s})$ be of the form

$$
K(s)=k\left(\frac{(s+0.47)(s+3.40}{s(s+a)}\right)
$$

so that

$$
G K=\left(\frac{170 k}{s(s+a)(s+9.00)(s+16.77)}\right)
$$

Pick 'a' so that $\mathrm{s}=-2+\mathrm{j} 4$ is on the root locus

- The angle of GK(s) $=180$ degrees

Solving for what we know:

$$
\left(\frac{170}{s(s+9.00)(s+16.77)}\right)_{s=-2+j 4}=0.3080 \angle-161.463^{0}
$$

For the angles to add up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=18.537^{0} \\
& a=\frac{4}{\tan (185370)}+2 \\
& a=13.929
\end{aligned}
$$

meaning

$$
K(s)=k\left(\frac{(s+0.47)(s+3.40}{s(s+13.929)}\right)
$$

To find ' k ', at any point on the root locus, $\mathrm{GK}=-1$

$$
\begin{aligned}
& G K=\left(\frac{170 k}{s(s+9.00)(s+13.929)(s+16.77)}\right)_{s=-2+j 4}=0.024 k \angle 180^{0} \\
& k=\frac{1}{0.024}=40.833
\end{aligned}
$$

meaning

$$
K(s)=40.833\left(\frac{(s+0.47)(s+3.40}{s(s+13.929)}\right)
$$

Check your design in Matlab or Simulink or VisSim

Requirements:

- No error for a step input
- check
- 2% settling time of 2 seconds
- check
- 20% overshoot
- check

Give an op-amp circuit to implement K (s)

$$
K(s)=40.833\left(\frac{(s+0.47)(s+3.40}{s(s+13.929)}\right)
$$

Rewrite as

$$
K(s)=8.167\left(\frac{s+3.40}{s+13.929}\right) \cdot 5\left(\frac{s+0.47}{s}\right)
$$

Systems with Delays

2) Assume a 100 ms delay is added to the system

$$
G(s)=\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) e^{-0.1 s}
$$

Design a compensator, $K(s)$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Same as before. Let $\mathrm{K}(\mathrm{s})$ be of the form

$$
K(s)=k\left(\frac{(s+0.47)(s+3.40)}{s(s+a)}\right)
$$

resulting in

$$
G K=\left(\frac{170 k}{s(s+a)(s+9.00)(s+16.77)}\right) e^{-0.1 s}
$$

Evaluate what we know:

$$
\left(\left(\frac{170}{s(s+9.00)(s+16.77)}\right) e^{-0.1 s}\right)_{s=-2+j 4}=0.3760 \angle+175.618^{0}
$$

There's too much phase shift.

Cancel another pole...

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.47)(s+3.40)(s+9)}{s(s+a)^{2}}\right) \\
& G K=\left(\frac{170 k}{s(s+a)^{2}(s+16.77)}\right) e^{-0.1 s}
\end{aligned}
$$

Evaluate what we know:

$$
\left(\left(\frac{170}{s(s+16.77)}\right) e^{-0.1 s}\right)_{s=-2+j 4}=3.043 \angle-154.637^{0}
$$

meaning

$$
\begin{aligned}
& \angle(s+a)^{2}=25.363^{0} \\
& \angle(s+a)=12.682^{0} \\
& a=\frac{4}{\tan (17.6870)}+2=19.77 \epsilon
\end{aligned}
$$

and

$$
K(s)=k\left(\frac{(s+0.47)(s+3.40)(s+9)}{s(s+19.776)^{2}}\right)
$$

At any point on the root locus, $\mathrm{GK}=-1$
$G K=\left(\left(\frac{170 k}{s(s+19.776)^{2}(s+16.77)}\right) e^{-0.1 s}\right)_{s=-2+j 4}=0.009 k \angle 180^{0}$

$$
k=\frac{1}{0.009}=109.415
$$

so

$$
K(s)=109.415\left(\frac{(s+0.47)(s+3.40)(s+9)}{s(s+19.776)^{2}}\right)
$$

Check your design in Matlab or Simulink or VisSim

Give an op-amp circuit to implement K (s)

$$
K(s)=109.415\left(\frac{(s+0.47)(s+3.40)(s+9)}{s(s+19.776)^{2}}\right)
$$

Rewrite as

$$
K(s)=\left(\frac{s+0.47}{s}\right) \cdot 10\left(\frac{s+3.40}{s+19.776}\right) \cdot 10.94\left(\frac{s+9}{s+19.776}\right)
$$

Unstable Systems

3) Assume the slow pole was unstable

$$
G(s)=\left(\frac{170}{(s-0.47)(s+3.40)(s+9.00)(s+16.77)}\right)
$$

Design a compensator, $K(s)$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Check your design in Matlab or Simulink or VisSim

Step 1: Just stabilize the system. Don't worry about the requirements
Let

$$
K_{1}(s)=k\left(\frac{s+3.40}{s+10}\right)
$$

Place the closed-loop pole at $\mathrm{s}=-1$

```
>> G = zpk([],[0.47,-3.40,-9,-16.77],170)
        1 7 0
    -----------------------------------
    (s-0.47) (s+3.4) (s+9) (s+16.77)
>> K1 = zpk(-3.40,-10,1)
(s+3.4)
-------
(s+10)
>> GK1 = minreal(G*K1)
    1 7 0
(s-0.47) (s+9) (s+10) (s+16.77)
>> evalfr(GK1,-1)
ans = -0.1019
>> k1 = 1/abs(ans)
k1 = 9.8182
>> K1 = zpk(-3.40,-10,9.8182)
9.8182 (s+3.4)
    (s+10)
>> G2 = minreal(G*K1 / (1 + G*K1))
    1669.094
(s+1) (s+4.112) (s^2 + 30.19s + 233.4)
```

Step 2: Now that the system is stable, meet the design specs

$$
\begin{aligned}
& K_{2}(s)=k\left(\frac{(s+1)(s+4.112)}{s(s+a)}\right) \\
& G_{2} K_{2}=\left(\frac{1669.094 k}{s(s+a)\left(s^{2}+30.19 s+233.4\right)}\right)
\end{aligned}
$$

Evaluate what we know

$$
\left(\frac{1669.094}{s\left(s^{2}+30.19 s+233.4\right)}\right)_{s=-2+j 4}=1.9429 \angle-149.6132^{0}
$$

meaning

$$
\begin{aligned}
& \angle(s+a)=30.3868^{0} \\
& \left.a=\frac{4}{\tan \left(3 n 3868^{0} 0\right.}+2=8.82\right]
\end{aligned}
$$

and

$$
K_{2}(s)=k\left(\frac{(s+1)(s+4.112)}{s(s+8.821)}\right)
$$

At any point on the root locus, $\mathrm{GK}=-1$

$$
\begin{aligned}
& G_{2} K_{2}=\left(\frac{1669.094 k}{s(s+8.821)\left(s^{2}+30.19 s+233.4\right)}\right)_{s=-2+j 4}=0.2457 k \angle 180^{0} \\
& k=\frac{1}{0.2457}=4.070 \\
& K_{2}(s)=4.070\left(\frac{(s+1)(s+4.112)}{s(s+8.821)}\right) \\
& K_{1}(s)=9.8182\left(\frac{s+3.4}{s+10}\right)
\end{aligned}
$$

Checking the resulting controller in VisSim

