Homework \#10: ECE 461/661

Digital PID Control. Due Monday, November 15th

PID Control

Assume $\mathrm{T}=0.5$ seconds:

$$
G(s)=\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right)
$$

1) Design a digital I controller

$$
K(s)=k\left(\frac{z}{z-1}\right)
$$

that results in 20% overshoot in the step response.
Simulate the step response of the closed-loop system (VisSim or Simulink preferred with $\mathrm{K}(\mathrm{z}) * \mathrm{G}(\mathrm{s})$)

Use the alternate method: Plant + Zero-Order Hold $+\mathrm{K}(\mathrm{z})=-1$

$$
\left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot k\left(\frac{z}{z-1}\right)\right)_{s=(-1+j 2) a}=1 \angle 180^{0}
$$

Search along the 20% overshoot damping line until the angle is 180 degrees
(time passes)

$$
\begin{aligned}
& s=-0.1879+j 0.3758 \\
& z=0.8943+j 0.1700 \\
& \left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot k\left(\frac{z}{z-1}\right)\right)_{s}=3.6439 k \angle 180^{0}
\end{aligned}
$$

meaning

$$
k=\frac{1}{3.6439}=0.2744
$$

and

$$
K(z)=0.2744\left(\frac{z}{z-1}\right)
$$

2) Assume $T=0.5$ seconds and

$$
G(s)=\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right)
$$

Design a digital PI controller

$$
K(s)=k\left(\frac{z-a}{z-1}\right)
$$

that results in 20% overshoot in the step response.
Simulate the step response of the closed-loop system (VisSim or Simulink preferred with $\mathrm{K}(\mathrm{z}) * \mathrm{G}(\mathrm{s})$)

Pick 'a' to cancel the pole at $\mathrm{s}=-0.47$

$$
\begin{aligned}
& s=-0.47 \\
& z=e^{s T}=e^{(-0.47)(0.5)}=0.7906
\end{aligned}
$$

Again, use the alternate approach

$$
\left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot k\left(\frac{z-0.7906}{z-1}\right)\right)_{s=(-1+j 2) a}=1 \angle 180^{0}
$$

Search along the damping line until the angle is 180 degrees

$$
\begin{aligned}
& s=-0.7242+j 1.4483 \\
& z=e^{s T}=0.5215+j 0.4613
\end{aligned}
$$

To find k , make the gain at this point equal to 1.0000

$$
\begin{aligned}
& \left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot k\left(\frac{z-0.7906}{z-1}\right)\right)_{s}=0.2703 k \angle 180^{0} \\
& k=\frac{1}{0.2703}=3.6994
\end{aligned}
$$

and

$$
K(z)=3.6994\left(\frac{z-0.7906}{z-1}\right)
$$

3) Assume $T=0.5$ seconds and

$$
G(s)=\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right)
$$

Design a digital PID controller

$$
K(s)=k\left(\frac{(z-a)(z-b)}{z(z-1)}\right)
$$

that results in 20% overshoot in the step response.
Simulate the step response of the closed-loop system (VisSim or Simulink preferred with $\mathrm{K}(\mathrm{z}) * \mathrm{G}(\mathrm{s})$)

Pick the two zeros to cancel the two slowest poles

$$
\begin{array}{ll}
s=-0.47 & z=e^{s T}=0.7906 \\
s=-3.40 & z=e^{s T}=0.1827
\end{array}
$$

meaning $\mathrm{K}(\mathrm{z})$ is of the form

$$
K(z)=k\left(\frac{(z-0.7906)(z-0.1827)}{z(z-1)}\right)
$$

Again, use the approach where you search along the damping line until the angle is 180 degrees

$$
\left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot k\left(\frac{(z-0.7906)(z-0.1827}{z(z-1)}\right)\right)_{s=(-1+j 2) a}=1 \angle 180^{0}
$$

Searching results in

$$
\begin{aligned}
& s=-0.8892+j 1.7783 \\
& z=e^{s T}=0.4039+j 0.4978
\end{aligned}
$$

To make the gain equal to -1.0000 at this point

$$
k=5.0936
$$

and

$$
K(z)=5.0936\left(\frac{(z-0.7906)(z-0.1827)}{z(z-1)}\right)
$$

Meeting Design Specs

4) Assume a sampling rate of $T=0.5$ seconds and

$$
G(s)=\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right)
$$

Design a digital controller that results in

- No error for a step input
- 20% overshoot for the step response, and
- A 2% settling time of 10 seconds

Simulate the step response of the closed-loop system (VisSim or Simulink preferred with $\mathrm{K}(\mathrm{z}) * \mathrm{G}(\mathrm{s})$)

Translation:

- Make it a type-1 system

Place the closed-loop dominant pole at

- $\mathrm{s}=-0.4+\mathrm{j} 0.8$
- $\mathrm{z}=0.7541+\mathrm{j} 0.3188$

Assume $\mathrm{K}(\mathrm{z})$ is of the form

$$
K(z)=k\left(\frac{(z-0.7906)(z-0.1827)}{(z-1)(z-a)}\right)
$$

Pick 'a' so that $\mathrm{s}=-0.4+\mathrm{j} 0.8$ is on the root locus (the phase is 180 degrees)

$$
\left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot k\left(\frac{(z-0.7906)(z-0.1827}{(z-1)(z-a)}\right)\right)_{s=-0.4+j 0.8}=1 \angle 180^{0}
$$

Analyze what we know:

$$
\left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot\left(\frac{(z-0.7906)(z-0.1827}{(z-1)}\right)\right)_{s=-0.4+j 0.8}=0.2776 \angle-121.45^{0}
$$

meaing, to make the angle 180 degrees

$$
\begin{aligned}
& \angle(z-a)=58.5475^{0} \\
& a=0.7541-\left(\frac{0.3188}{\tan \left(58.5475^{0}\right)}\right)=0.5591
\end{aligned}
$$

Find k so that the gain is one

$$
\begin{aligned}
& \left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.25 s} \cdot\left(\frac{(z-0.7906)(z-0.1827}{(z-1)(z-0.5591)}\right)\right)_{s=-0.4+j 0.8}=0.7828 \angle 180^{0} \\
& k=\frac{1}{0.7828}=1.3463
\end{aligned}
$$

and

$$
K(z)=1.3463\left(\frac{(z-0.7906)(z-0.1827}{(z-1)(z-0.5591)}\right)
$$

5) Assume

$$
G(s)=\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right)
$$

Design a digital controller with $\mathrm{T}=0.1$ second that results in

- No error for a step input
- 20% overshoot for the step response, and
- A 2% settling time of 10 seconds

Simulate the step response of the closed-loop system (VisSim or Simulink preferred with $\mathrm{K}(\mathrm{z}) * \mathrm{G}(\mathrm{s})$)
Note: Changing the sampling rate is a big deal: it means a complete redesign of $\mathrm{K}(\mathrm{z})$

With $\mathrm{T}=0.1$

- $\mathrm{s}=-0.4+\mathrm{j} 0.8$
- $\mathrm{z}=0.9577+\mathrm{j} 0.0768$

Same procedure but with $\mathrm{T}=0.1$

$$
K(z)=k\left(\frac{(z-0.9541)(z-0.7113}{(z-1)(z-a)}\right)
$$

Analyze what we know:

$$
\left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{(z-0.9541)(z-0.7113}{(z-1)}\right)\right)_{s=-0.4+j 0.8}=0.1112 \angle-124.566^{0}
$$

meaning

$$
\begin{aligned}
& \angle(z-a)=55.4332^{0} \\
& a=0.9577-\left(\frac{0.0768}{\tan \left(55.4332^{0}\right)}\right)=0.904 \varepsilon
\end{aligned}
$$

Analyzing what we now know

$$
\left(\left(\frac{170}{(s+0.47)(s+3.40)(s+9.00)(s+16.77)}\right) \cdot e^{-0.05 s} \cdot\left(\frac{(z-0.9541)(z-0.7113}{(z-1)(z-0.9048)}\right)\right)_{s=-0.4+j 0.8}=1.1927 \angle 180^{0}
$$

so

$$
k=\frac{1}{1.1927}=0.8385
$$

and

$$
K(z)=0.8385\left(\frac{(z-0.9541)(z-0.7113)}{(z-1)(z-0.9048)}\right)
$$

