1) Give the transfer function for a system with the following step response:

DC gain $=1.75$
2% settling time $=200 \mathrm{~ms}$

$$
\begin{aligned}
& \frac{4}{\sigma}=200 \mathrm{~ms} \\
& \sigma=\frac{4}{200 \mathrm{~ms}}=20
\end{aligned}
$$

Frequency of oscillation $=3$ cycles in 125 ms

$$
\omega_{d}=\left(\frac{3 \text { cycles }}{125 \mathrm{~ms}}\right) 2 \pi=150.8 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

So

$$
G(s) \approx\left(\frac{k}{(s+20+j 150.8)(s+20-j 150.8)}\right)
$$

Pick 'k' to make the DC gain 1.75

$$
G(s) \approx\left(\frac{40,496}{(s+20+j 150.8)(s+20-j 150.8)}\right)
$$

2) Write the differential equations which describe the following circuit (i.e. write the N differential equations which correspond to the voltage node equations)

2b) Express these dynamics in state-space form
Simplify and group terms

$$
\begin{aligned}
& s V_{1}=V_{0}-V_{1}-100 I_{4} \\
& s V_{2}=50 I_{4}-0.125 V_{2}+0.125 V_{3} \\
& s V_{3}=0.133 V_{0}+0.1 V_{2}-0.3133 V_{3} \\
& s I_{4}=0.5 V_{1}-100 I_{4}-0.5 V_{2}
\end{aligned}
$$

Place in matrix form (state-space form)

$$
\left[\begin{array}{c}
s V_{1} \\
s V_{2} \\
s V_{3} \\
s I_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & -100 \\
0 & -0.125 & 0.125 & 50 \\
0 & 0.1 & -0.3133 & 0 \\
0.5 & -0.5 & 0 & -100
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
I_{4}
\end{array}\right]+\left[\begin{array}{c}
1 \\
0 \\
0.133 \\
0
\end{array}\right] V_{0}
$$

3) Gain Compensation: The root locus for

$$
G(s)=\left(\frac{40}{(s+1)(s+6)(s+7)}\right)
$$

is shown below. Determine the following:
\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\text { Maximum gain, } \mathrm{k}, \text { for a stable } \\
\text { closed-loop system }\end{array} & \begin{array}{c}\text { jw crossing }=\mathrm{j} 7.4162 \\
\mathbf{k}=\mathbf{1 8 . 2 0 0}\end{array}
$$ \\
\hline \mathrm{k} for a damping ratio of 0.15 \& \mathrm{~s}=-0.8703+\mathrm{j} 5.7362 \\

\mathbf{k}=\mathbf{9 . 2 6 6 9}\end{array}\right]\)| $\mathbf{s}=\mathbf{- 0 . 8 7 0 3}+\mathbf{j 5 . 7 3 6 2}$ |
| :---: |
| Closed-loop dominant pole(s)
 for a damping ratio of 0.15 |
| Closed-Loop DC gain
 for a damping ratio of 0.15 |
| $\mathbf{D C ~ g a i n ~}=\mathbf{K p} / \mathrm{s}=0) * \mathrm{k}=8.8256$ |

4) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+1)(s+6)(s+7)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- No error for a step input, and
- A closed-loop dominant pole at $\mathrm{s}=-3+\mathrm{j} 2$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1)(s+6)}{s(s+a)}\right) \\
& G K=\left(\frac{40 k}{s(s+7)(s+a)}\right)
\end{aligned}
$$

Analyze what we know

$$
\left(\frac{40}{s(s+7)}\right)_{s=-3+j 2}=2.4807 \angle-172.875^{0}
$$

For the angle to add up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=7.125^{0} \\
& a=3+\left(\frac{2}{\tan \left(7.125^{\circ}\right)}\right)=19.00
\end{aligned}
$$

Find k

$$
\begin{aligned}
& G K=\left(\frac{40 k}{s(s+7)(s+19)}\right)_{s=-3+j 2}=0.1538 k \leq 180^{0}=-1 \\
& k=6.500
\end{aligned}
$$

and

$$
K(s)=6.500\left(\frac{(s+1)(s+6)}{s(s+19)}\right)
$$

Another valid solution is

$$
K(s)=4.2937\left(\frac{(s+1)(s+6)(s+7)}{s(s+9.6056)^{2}}\right)
$$

5) Given the following stable system

$$
G(z)=\left(\frac{0.04(z+1)}{(z-0.9)(z-0.4)(z-0.3)}\right)
$$

Determine a digital compensator, $\mathrm{K}(\mathrm{z})$, which results in the closed-loop system having

- No error for a step input,
- A closed-loop dominant pole at $\mathrm{z}=0.7+\mathrm{j} 0.1$, and
- A sampling rate of $\mathrm{T}=0.01$

Let

$$
\begin{aligned}
& K(z)=k\left(\frac{(z-0.9)(z-0.4)}{z(z-a)}\right) \\
& G K=\left(\frac{0.04 k(z+1)}{z(z-0.3)(z-a)}\right)
\end{aligned}
$$

Analyze what we know

$$
\left(\frac{0.04(z+1)}{z(z-0.3)}\right)_{z=0.7+j 0.1}=0.5224 \angle-172.2348^{0}
$$

For the angles to add to 180 degrees

$$
\begin{aligned}
& \angle(z-a)=7.7652^{0} \\
& a=0.7-\left(\frac{0.1}{\tan \left(7.7652^{\circ}\right)}\right)=-0.0333
\end{aligned}
$$

To find k

$$
\begin{aligned}
& G K=\left(\frac{0.04 k(z+1)}{(z-1)(z-0.3)(z+0.0333)}\right)_{z=0.7+j 0.1}=0.7059 k \angle 180^{0}=-1 \\
& k=\frac{1}{0.7059}=1.4166
\end{aligned}
$$

and16

$$
K(z)=1.4166\left(\frac{(z-0.9)(z-0.4)}{(z-1)(z+0.0333)}\right)
$$

Another solution

$$
K(z)=1.2935\left(\frac{(z-0.9)(z-0.4)(z-0.3)}{(z-1)(z-0.1817)^{2}}\right)
$$

6) Given the following stable system

$$
G(s)=\left(\frac{40}{(s+1)(s+6)(s+7)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in the closed-loop system having

- A closed-loop DC gain of 1.000 (i.e. no error for a step input),
- A 0 dB gain frequency of $3 \mathrm{rad} / \mathrm{sec}$, and
- A phase margin of 55 degrees

Translation: At $3 \mathrm{rad} / \mathrm{sec}$, the open look gain is 1.000 and the phase shift is 55 degrees short of -180 degrees

$$
G K(j 3)=1 \angle-125^{\circ}
$$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1)(s+6)}{s(s+a)}\right) \\
& G K=\left(\frac{40 k}{s(s+7)(s+a)}\right)
\end{aligned}
$$

Evaluate what we know

$$
\left(\frac{40}{s(s+7)}\right)_{s=j 3}=1.7508 \angle-113.1986^{0}
$$

For the phase to be -125 degrees

$$
\begin{aligned}
& \angle(s+a)=11.8014^{0} \\
& a=\left(\frac{3}{\tan \left(11.8014^{0}\right)}\right)=14.3584
\end{aligned}
$$

To find k

$$
\begin{aligned}
& G K=\left(\frac{40 k}{s(s+7)(s+14.3584}\right)_{s=j 3}=0.1194 k \angle-125^{0} \\
& k=\frac{1}{0.1194}=8.3784
\end{aligned}
$$

and

$$
K(s)=8.3784\left(\frac{(s+1)(s+6)}{s(s+14.3584)}\right)
$$

Another valid solution is

$$
K(s)=7.4649\left(\frac{(s+1)(s+6)(s+7)}{s(s+9.5148)^{2}}\right)
$$

