Homework \#4: ECE 461 / 661

1st and 2nd Order Approximations. Due Monday, September 12th

LaPlace Transforms (Due September 12th)

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{5(s+2)}{(s+3)(s+4)(s+5)}\right) X
$$

a) What is the differential equation relating X and Y ?
b) Determine $y(t)$ assuming

$$
x(t)=4 \cos (2 t)+3 \sin (2 t)
$$

c) Determine $y(t)$ assuming $x(t)$ is a unit step input

$$
x(t)=u(t)
$$

2) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{300}{(s+1+j 4)(s+1-j 4)(s+15)}\right) X
$$

a) Use 2nd-order approximations to determine

- The 2% settling time
- The percent overshoot for a step input
- The steady-state output for a step input $(\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}))$
b) Check your answers using the 3rd order model and Matlab, Simulink, of VisSim (your pick)

3) Determine the transfer function for a system with the following step response:

4) Determine the transfer function for a system with the following step response:

