Homework \#6: ECE 461/661

Mass-Spring Systems, Rotational Systems, DC Motors. Due Monday, September 26th

Mass Spring systems

1) (20pt) Draw the circuit equivalent for the following mass-spring systems.

- Express the dynamics in state-space form
- Find the transfer function from F to X2
- Plot the step response from F to X2

Problem 1
2) (20pt) Draw the circuit equivalent for the following mass-spring systems.

- Express the dynamics in state-space form
- Find the transfer function from F to X3

Plot the step response from F to X3

Rotational Systems

3) Draw the circuit equivalent for the following rotational system.

- Express the dynamics in state-space form
- Find the transfer function from T to Q1
- Plot the step response from T to Q1

Problem 3: $J=0.5 \mathrm{Kg} \mathrm{m} / \mathrm{s}^{\wedge} 2 . \mathrm{K}=10 \mathrm{Nm} / \mathrm{rad}$

Motors

4) Find the transfer function for the following DC servo motor
http://www.baldor.com/catalog/CDP3335
Allen Bradley CDP3335: 1/2 HP DC Servo Motor

- $\$ 1243$ ea
- Armature Resistance $=\mathrm{Ra}=0.664$ Ohms
- Armature Inductance $=\mathrm{La}=5.119 \mathrm{mH}$
- Armature Inertia $=\mathrm{J}=6.318 \mathrm{lb}$-ft2
- 4.6A @ 2426 rpm @ $1 \mathrm{ft}-\mathrm{lb}$ load
- Weight 26.0 lb

5) Assume this motor is used to power an electric bicycle at 20 mph

- Motor speed @ $20 \mathrm{mph}=2426 \mathrm{rpm}$
- Gear (wheel) used to convert 2426 rpm to 20 mph
- Bicycle weight $=100 \mathrm{~kg}$

What is the gear reduction (wheel diameter) to convert 2426 rpm to 20 mph ?
What is the inertia relative to the DC servo motor (bring the 100 kg mass back to the motor through a gear)
What is the transfer function (dynamics) for the bicycle / servo motor combination?

