Homework #7: ECE 461/661

Error Constants, Routh Criteria, Skething a Root Locus. Due Monday, October 10th

Error Constants

1) Determine the error constants and steady-state error for the following systems

G(s)	System Type	Кр	Kv	Error for a unit step input
$\left(\frac{1000}{(s+5)(s+20)}\right)$				
$\left(\frac{1000}{s(s+5)(s+20)}\right)$				
$\left(\frac{1000(s+1)}{s^2(s+5)(s+20)}\right)$				
$\left(\frac{1000}{(s-5)(s+20)}\right)$				

Routh Criteria

Determine the range of k that results in a negative definite polynomial (i.e. a stable system)

2)
$$(s-1)(s+8)(s+10) + 2k = 0$$

3)
$$(s+1)(s+6)(s+8)(s+10) + 2k = 0$$

Sketching a Root Locus

Sketch the root locus plot for the following systems for 0 < k < infinity. Also plot the

• real axis loci, break away points, jw crossings (if any), and asymptotes

4)
$$(s-1)(s+8)(s+10) + 2k = 0$$

5)
$$(s+1)(s+6)(s+8)(s+10) + 2k = 0$$

Root Locus with Complex Poles & Zeros

Sketch the root locus plot for the following systems for 0 < k < infinity. Also plot the

· real axis loci, break away points, jw crossings (if any), asymptotes, and departure/approach angle

6)
$$G(s) = \left(\frac{10}{s(s+3)(s+1+j3)(s+1-j3)}\right)$$

7)
$$G(s) = \left(\frac{(s+j3)(s-j3)}{s(s+4)(s+5)(s+6)}\right)$$