Homework \#10: ECE 461/661

z-Transforms, s to z conversion, Root Locus in the z-Domain. Due Monday, November 7th

z-Transforms

1) Determine the difference equation that relates X and Y

$$
Y=\left(\frac{0.05 z}{(z-0.9)(z-0.8)(z-0.5)}\right) X
$$

2) Determine $y(k)$ assuming

$$
Y=\left(\frac{0.05 z}{(z-0.9)(z-0.8)(z-0.5)}\right) X \quad x(t)=5 \cos (2 t)+2 \sin (2 t)
$$

3) Determine $y(k)$ assuming

$$
Y=\left(\frac{0.05 z}{(z-0.9)(z-0.8)(z-0.5)}\right) X \quad x(k)=u(k)
$$

sto z conversion

3) Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.1$ seconds
4) Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.01$ seconds

$$
G(s)=\left(\frac{903}{(s+0.81)(s+5.20)(s+13.59)(s+25.25)}\right)
$$

Root Locus in the z-Domain

Assume $\mathrm{T}=0.1$ seconds.

$$
G(s)=\left(\frac{903}{(s+0.81)(s+5.20)(s+13.59)(s+25.25)}\right)
$$

5) Draw the root locus for $G(z)$
6) Find k for no overshoot in the step response

- Simulate the closed-loop system's step response

7) Find k for 20% overshoot for a step response (damping ratio $=0.4559$)

- Simulate the closed-loop system's step response

8) Find k for a damping ratio of 0.00

- Simulate the closed-loop system's step response

